Addict 写起来令人极其舒适的字典模块-Python 实用宝典

Addict 写起来令人极其舒适的字典模块

超级无敌好用的字典工具

Addit 是一个Python模块,除了提供标准的字典语法外,Addit生成的字典的值既可以使用属性来获取,也可以使用属性进行设置。

这意味着你不用再写这样的字典了:

 

body = {
    'query': {
        'filtered': {
            'query': {
                'match': {'description': 'addictive'}
            },
            'filter': {
                'term': {'created_by': 'Mats'}
            }
        }
    }
}

相反,你只需编写以下三行就能完成目的:

body = Dict()
body.query.filtered.query.match.description = 'addictive'
body.query.filtered.filter.term.created_by = 'Mats'

1.安装

你可以通过安装pip

pip install addict

或通过conda

conda install addict -c conda-forge

Addit 在Python2.7+和Python3上都可以运行。

2.用法

Addict 继承自dict,但在访问和设置其值方面更加灵活。使用字典现在是一种乐趣!

设置嵌套词典的项是极其舒服的:

>>> from addict import Dict
>>> mapping = Dict()
>>> mapping.a.b.c.d.e = 2
>>> mapping
{'a': {'b': {'c': {'d': {'e': 2}}}}}

如果Dict是用任何可迭代值实例化的,它将遍历并克隆这些值,然后写入到对应的属性及值中,比如:

>>> mapping = {'a': [{'b': 3}, {'b': 3}]}
>>> dictionary = Dict(mapping)
>>> dictionary.a[0].b
3

mapping['a']不再与dictionary['a']相同。

>>> mapping['a'] is dictionary['a']
False

当然,此特点仅限于构造函数,而不是在使用属性或设置值时:

>>> a = Dict()
>>> b = [1, 2, 3]
>>> a.b = b
>>> a.b is b
True

3.要牢记的事情

记住,int不是有效的属性名,因此必须使用 get/setitem 语法 设置/获取 非字符串的dict键:

>>> addicted = Dict()
>>> addicted.a.b.c.d.e = 2
>>> addicted[2] = [1, 2, 3]
{2: [1, 2, 3], 'a': {'b': {'c': {'d': {'e': 2}}}}}

不过,你可以随意混合使用这两种语法:

>>> addicted.a.b['c'].d.e
2

4.属性,如键、item等

Addit 不会让你覆盖dict的属性,因此以下操作将不起作用

>>> mapping = Dict()
>>> mapping.keys = 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "addict/addict.py", line 53, in __setattr__
raise AttributeError("'Dict' object attribute '%s' is read-only" % name)
AttributeError: 'Dict' object attribute 'keys' is read-only

不过,使用下面这种方式就可以:

>>> a = Dict()
>>> a['keys'] = 2
>>> a
{'keys': 2}
>>> a['keys']
2

5.默认值

对于不在字典中的键,Addit的行为如defaultdict(Dict),因此丢失的键返回一个空的Dict而不是抛出KeyError如果此行为不是所需的,则可以使用以下方式恢复抛出KeyError:

>>> class DictNoDefault(Dict):
>>> def __missing__(self, key):
>>> raise KeyError(key)

但请注意,这样会失去速记赋值功能(addicted.a.b.c.d.e = 2)

6.转化为普通字典

如果你觉得将 Addict 传递到其他函数或模块并不安全,请使用to_dict()方法,它返回会把 Addict 转化为普通字典。

>>> regular_dict = my_addict.to_dict()
>>> regular_dict.a = 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'dict' object has no attribute 'a'

当您希望在几行代码中创建嵌套的字典,然后将其发送到不同的函数或模块时,这非常适合:

body = Dict()
body.query.filtered.query.match.description = 'addictive'
body.query.filtered.filter.term.created_by = 'Mats'
third_party_module.search(query=body.to_dict())

7.计数

Dict轻松访问和修改深度嵌套属性的能力使其成为计数的理想选择。使用Addict,你还可以容易允许按多个级别计数,内部使用的原理是collections.Counter

比如以下数据:

data = [
    {'born': 1980, 'gender': 'M', 'eyes': 'green'},
    {'born': 1980, 'gender': 'F', 'eyes': 'green'},
    {'born': 1980, 'gender': 'M', 'eyes': 'blue'},
    {'born': 1980, 'gender': 'M', 'eyes': 'green'},
    {'born': 1980, 'gender': 'M', 'eyes': 'green'},
    {'born': 1980, 'gender': 'F', 'eyes': 'blue'},
    {'born': 1981, 'gender': 'M', 'eyes': 'blue'},
    {'born': 1981, 'gender': 'F', 'eyes': 'green'},
    {'born': 1981, 'gender': 'M', 'eyes': 'blue'},
    {'born': 1981, 'gender': 'F', 'eyes': 'blue'},
    {'born': 1981, 'gender': 'M', 'eyes': 'green'},
    {'born': 1981, 'gender': 'F', 'eyes': 'blue'}
]

如果你想计算有多少人出生在born性别的gender使用eyes眼睛,你可以很容易地计算出这些信息:

counter = Dict()

for row in data:
born = row['born']
gender = row['gender']
eyes = row['eyes']
counter
[born][gender][eyes] += 1 print(counter)

{1980: {'M': {'blue': 1, 'green': 3}, 'F': {'blue': 1, 'green': 1}}, 1981: {'M': {'blue': 2, 'green': 1}, 'F': {'blue': 2, 'green': 1}}}

8.更新

普通字典的更新方式如下:

>>> d = {'a': {'b': 3}}
>>> d.update({'a': {'c': 4}})
>>> print(d)
{'a': {'c': 4}}

addict的更新方式如下,它会递归并实际更新嵌套的字典:

>>> D = Dict({'a': {'b': 3}})
>>> D.update({'a': {'c': 4}})
>>> print(D)
{'a': {'b': 3, 'c': 4}}

9.为什么需要addict

这个模块完全是从用Python创建Elasticsearch查询的繁琐过程中发展而来的。每当你发现自己在写了很复杂的字典逻辑时,只要记住你没有必要这样做,使用 Addict 就行。

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!


​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Pandas 性能优化
本文由 Python 实用宝典 作者:Python实用宝典 发表,其版权均为 Python 实用宝典 所有,文章内容系作者个人观点,不代表 Python 实用宝典 对观点赞同或支持。如需转载,请注明文章来源。
1

抱歉,评论已关闭!