问题:Python可以打印函数定义吗?
在JavaScript中,可以打印出函数的定义。有没有办法在Python中完成此任务?
(只是在交互模式下玩,所以我想在没有open()的情况下读取模块。我只是很好奇。)
回答 0
如果要导入功能,则可以使用inspect.getsource
:
>>> import re
>>> import inspect
>>> print inspect.getsource(re.compile)
def compile(pattern, flags=0):
"Compile a regular expression pattern, returning a pattern object."
return _compile(pattern, flags)
这将在交互式提示中起作用,但显然仅适用于导入的对象(不适用于交互式提示中定义的对象)。当然,只有在Python可以找到源代码的情况下它才会起作用(因此不能在内置对象,C库,.pyc文件等上找到)
回答 1
如果您使用的是iPython,则可以使用function_name?
获得帮助,并且function_name??
可以打印出源代码。
回答 2
这是我想出的方法:
import inspect as i
import sys
sys.stdout.write(i.getsource(MyFunction))
这样可以取出换行符并很好地打印功能
回答 3
尽管我通常会认为这inspect
是一个很好的答案,但我不同意您无法获得解释器中定义的对象的源代码。如果使用dill.source.getsource
from dill
,即使它们是交互式定义的,也可以获取函数和lambda的来源。它也可以从咖喱中定义的绑定或未绑定类方法和函数中获取代码。但是,如果没有封闭对象的代码,则可能无法编译该代码。
>>> from dill.source import getsource
>>>
>>> def add(x,y):
... return x+y
...
>>> squared = lambda x:x**2
>>>
>>> print getsource(add)
def add(x,y):
return x+y
>>> print getsource(squared)
squared = lambda x:x**2
>>>
>>> class Foo(object):
... def bar(self, x):
... return x*x+x
...
>>> f = Foo()
>>>
>>> print getsource(f.bar)
def bar(self, x):
return x*x+x
>>>
回答 4
用help(function)
得到的功能说明。
您可以help()
在此处了解更多信息。
回答 5
您可以使用__doc__关键字:
#print the class description
print string.__doc__
#print function description
print open.__doc__
回答 6
您可以__doc__
在函数中使用,以hog()
函数为例:您可以看到这样的用法hog()
:
from skimage.feature import hog
print hog.__doc__
输出将是:
Extract Histogram of Oriented Gradients (HOG) for a given image.
Compute a Histogram of Oriented Gradients (HOG) by
1. (optional) global image normalisation
2. computing the gradient image in x and y
3. computing gradient histograms
4. normalising across blocks
5. flattening into a feature vector
Parameters
----------
image : (M, N) ndarray
Input image (greyscale).
orientations : int
Number of orientation bins.
pixels_per_cell : 2 tuple (int, int)
Size (in pixels) of a cell.
cells_per_block : 2 tuple (int,int)
Number of cells in each block.
visualise : bool, optional
Also return an image of the HOG.
transform_sqrt : bool, optional
Apply power law compression to normalise the image before
processing. DO NOT use this if the image contains negative
values. Also see `notes` section below.
feature_vector : bool, optional
Return the data as a feature vector by calling .ravel() on the result
just before returning.
normalise : bool, deprecated
The parameter is deprecated. Use `transform_sqrt` for power law
compression. `normalise` has been deprecated.
Returns
-------
newarr : ndarray
HOG for the image as a 1D (flattened) array.
hog_image : ndarray (if visualise=True)
A visualisation of the HOG image.
References
----------
* http://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
* Dalal, N and Triggs, B, Histograms of Oriented Gradients for
Human Detection, IEEE Computer Society Conference on Computer
Vision and Pattern Recognition 2005 San Diego, CA, USA
Notes
-----
Power law compression, also known as Gamma correction, is used to reduce
the effects of shadowing and illumination variations. The compression makes
the dark regions lighter. When the kwarg `transform_sqrt` is set to
``True``, the function computes the square root of each color channel
and then applies the hog algorithm to the image.
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。