问题:在Flask中进行异步任务

我正在Flask中编写一个应用程序,除了WSGI同步和阻塞之外,它的运行情况非常好。我特别有一项任务,该任务调出第三方API,该任务可能需要几分钟才能完成。我想拨打该电话(实际上是一系列电话)并使其运行。同时控制权返回给Flask。

我的看法如下:

@app.route('/render/<id>', methods=['POST'])
def render_script(id=None):
    ...
    data = json.loads(request.data)
    text_list = data.get('text_list')
    final_file = audio_class.render_audio(data=text_list)
    # do stuff
    return Response(
        mimetype='application/json',
        status=200
    )

现在,我要做的就是

final_file = audio_class.render_audio()

运行并提供在方法返回时要执行的回调,而Flask可以继续处理请求。这是我需要Flask异步运行的唯一任务,并且我想就如何最好地实现这一点提供一些建议。

我看过Twisted和Klein,但我不确定它们是否过大,因为Threading就足够了。或者也许Celery是一个不错的选择?

I am writing an application in Flask, which works really well except that WSGI is synchronous and blocking. I have one task in particular which calls out to a third party API and that task can take several minutes to complete. I would like to make that call (it’s actually a series of calls) and let it run. while control is returned to Flask.

My view looks like:

@app.route('/render/<id>', methods=['POST'])
def render_script(id=None):
    ...
    data = json.loads(request.data)
    text_list = data.get('text_list')
    final_file = audio_class.render_audio(data=text_list)
    # do stuff
    return Response(
        mimetype='application/json',
        status=200
    )

Now, what I want to do is have the line

final_file = audio_class.render_audio()

run and provide a callback to be executed when the method returns, whilst Flask can continue to process requests. This is the only task which I need Flask to run asynchronously, and I would like some advice on how best to implement this.

I have looked at Twisted and Klein, but I’m not sure they are overkill, as maybe Threading would suffice. Or maybe Celery is a good choice for this?


回答 0

我将使用Celery为您处理异步任务。您需要安装一个代理作为您的任务队列(建议使用RabbitMQ和Redis)。

app.py

from flask import Flask
from celery import Celery

broker_url = 'amqp://guest@localhost'          # Broker URL for RabbitMQ task queue

app = Flask(__name__)    
celery = Celery(app.name, broker=broker_url)
celery.config_from_object('celeryconfig')      # Your celery configurations in a celeryconfig.py

@celery.task(bind=True)
def some_long_task(self, x, y):
    # Do some long task
    ...

@app.route('/render/<id>', methods=['POST'])
def render_script(id=None):
    ...
    data = json.loads(request.data)
    text_list = data.get('text_list')
    final_file = audio_class.render_audio(data=text_list)
    some_long_task.delay(x, y)                 # Call your async task and pass whatever necessary variables
    return Response(
        mimetype='application/json',
        status=200
    )

运行您的Flask应用,然后启动另一个过程来运行您的Celery工作者。

$ celery worker -A app.celery --loglevel=debug

我还将参考Miguel Gringberg的文章以获取更深入的将Celery与Flask结合使用的指南。

I would use Celery to handle the asynchronous task for you. You’ll need to install a broker to serve as your task queue (RabbitMQ and Redis are recommended).

app.py:

from flask import Flask
from celery import Celery

broker_url = 'amqp://guest@localhost'          # Broker URL for RabbitMQ task queue

app = Flask(__name__)    
celery = Celery(app.name, broker=broker_url)
celery.config_from_object('celeryconfig')      # Your celery configurations in a celeryconfig.py

@celery.task(bind=True)
def some_long_task(self, x, y):
    # Do some long task
    ...

@app.route('/render/<id>', methods=['POST'])
def render_script(id=None):
    ...
    data = json.loads(request.data)
    text_list = data.get('text_list')
    final_file = audio_class.render_audio(data=text_list)
    some_long_task.delay(x, y)                 # Call your async task and pass whatever necessary variables
    return Response(
        mimetype='application/json',
        status=200
    )

Run your Flask app, and start another process to run your celery worker.

$ celery worker -A app.celery --loglevel=debug

I would also refer to Miguel Gringberg’s write up for a more in depth guide to using Celery with Flask.


回答 1

线程化是另一种可能的解决方案。尽管基于Celery的解决方案对于大规模应用程序更好,但是如果您不希望在所讨论的端点上有太多流量,则线程化是一种可行的选择。

该解决方案基于Miguel Grinberg的PyCon 2016 Flask Scale演示文稿,特别是其幻灯片平台中的第41张幻灯片。对于原始源感兴趣的人,他的代码也可以在github上找到。

从用户的角度来看,代码的工作方式如下:

  1. 您调用执行长时间运行任务的端点。
  2. 该端点返回202接受的链接,以检查任务状态。
  3. 在taks仍在运行时,对状态链接的调用返回202,在任务完成时返回200(及其结果)。

要将api调用转换为后台任务,只需添加@async_api装饰器。

这是一个完整的示例:

from flask import Flask, g, abort, current_app, request, url_for
from werkzeug.exceptions import HTTPException, InternalServerError
from flask_restful import Resource, Api
from datetime import datetime
from functools import wraps
import threading
import time
import uuid

tasks = {}

app = Flask(__name__)
api = Api(app)


@app.before_first_request
def before_first_request():
    """Start a background thread that cleans up old tasks."""
    def clean_old_tasks():
        """
        This function cleans up old tasks from our in-memory data structure.
        """
        global tasks
        while True:
            # Only keep tasks that are running or that finished less than 5
            # minutes ago.
            five_min_ago = datetime.timestamp(datetime.utcnow()) - 5 * 60
            tasks = {task_id: task for task_id, task in tasks.items()
                     if 'completion_timestamp' not in task or task['completion_timestamp'] > five_min_ago}
            time.sleep(60)

    if not current_app.config['TESTING']:
        thread = threading.Thread(target=clean_old_tasks)
        thread.start()


def async_api(wrapped_function):
    @wraps(wrapped_function)
    def new_function(*args, **kwargs):
        def task_call(flask_app, environ):
            # Create a request context similar to that of the original request
            # so that the task can have access to flask.g, flask.request, etc.
            with flask_app.request_context(environ):
                try:
                    tasks[task_id]['return_value'] = wrapped_function(*args, **kwargs)
                except HTTPException as e:
                    tasks[task_id]['return_value'] = current_app.handle_http_exception(e)
                except Exception as e:
                    # The function raised an exception, so we set a 500 error
                    tasks[task_id]['return_value'] = InternalServerError()
                    if current_app.debug:
                        # We want to find out if something happened so reraise
                        raise
                finally:
                    # We record the time of the response, to help in garbage
                    # collecting old tasks
                    tasks[task_id]['completion_timestamp'] = datetime.timestamp(datetime.utcnow())

                    # close the database session (if any)

        # Assign an id to the asynchronous task
        task_id = uuid.uuid4().hex

        # Record the task, and then launch it
        tasks[task_id] = {'task_thread': threading.Thread(
            target=task_call, args=(current_app._get_current_object(),
                               request.environ))}
        tasks[task_id]['task_thread'].start()

        # Return a 202 response, with a link that the client can use to
        # obtain task status
        print(url_for('gettaskstatus', task_id=task_id))
        return 'accepted', 202, {'Location': url_for('gettaskstatus', task_id=task_id)}
    return new_function


class GetTaskStatus(Resource):
    def get(self, task_id):
        """
        Return status about an asynchronous task. If this request returns a 202
        status code, it means that task hasn't finished yet. Else, the response
        from the task is returned.
        """
        task = tasks.get(task_id)
        if task is None:
            abort(404)
        if 'return_value' not in task:
            return '', 202, {'Location': url_for('gettaskstatus', task_id=task_id)}
        return task['return_value']


class CatchAll(Resource):
    @async_api
    def get(self, path=''):
        # perform some intensive processing
        print("starting processing task, path: '%s'" % path)
        time.sleep(10)
        print("completed processing task, path: '%s'" % path)
        return f'The answer is: {path}'


api.add_resource(CatchAll, '/<path:path>', '/')
api.add_resource(GetTaskStatus, '/status/<task_id>')


if __name__ == '__main__':
    app.run(debug=True)

Threading is another possible solution. Although the Celery based solution is better for applications at scale, if you are not expecting too much traffic on the endpoint in question, threading is a viable alternative.

This solution is based on Miguel Grinberg’s PyCon 2016 Flask at Scale presentation, specifically slide 41 in his slide deck. His code is also available on github for those interested in the original source.

From a user perspective the code works as follows:

  1. You make a call to the endpoint that performs the long running task.
  2. This endpoint returns 202 Accepted with a link to check on the task status.
  3. Calls to the status link returns 202 while the taks is still running, and returns 200 (and the result) when the task is complete.

To convert an api call to a background task, simply add the @async_api decorator.

Here is a fully contained example:

from flask import Flask, g, abort, current_app, request, url_for
from werkzeug.exceptions import HTTPException, InternalServerError
from flask_restful import Resource, Api
from datetime import datetime
from functools import wraps
import threading
import time
import uuid

tasks = {}

app = Flask(__name__)
api = Api(app)


@app.before_first_request
def before_first_request():
    """Start a background thread that cleans up old tasks."""
    def clean_old_tasks():
        """
        This function cleans up old tasks from our in-memory data structure.
        """
        global tasks
        while True:
            # Only keep tasks that are running or that finished less than 5
            # minutes ago.
            five_min_ago = datetime.timestamp(datetime.utcnow()) - 5 * 60
            tasks = {task_id: task for task_id, task in tasks.items()
                     if 'completion_timestamp' not in task or task['completion_timestamp'] > five_min_ago}
            time.sleep(60)

    if not current_app.config['TESTING']:
        thread = threading.Thread(target=clean_old_tasks)
        thread.start()


def async_api(wrapped_function):
    @wraps(wrapped_function)
    def new_function(*args, **kwargs):
        def task_call(flask_app, environ):
            # Create a request context similar to that of the original request
            # so that the task can have access to flask.g, flask.request, etc.
            with flask_app.request_context(environ):
                try:
                    tasks[task_id]['return_value'] = wrapped_function(*args, **kwargs)
                except HTTPException as e:
                    tasks[task_id]['return_value'] = current_app.handle_http_exception(e)
                except Exception as e:
                    # The function raised an exception, so we set a 500 error
                    tasks[task_id]['return_value'] = InternalServerError()
                    if current_app.debug:
                        # We want to find out if something happened so reraise
                        raise
                finally:
                    # We record the time of the response, to help in garbage
                    # collecting old tasks
                    tasks[task_id]['completion_timestamp'] = datetime.timestamp(datetime.utcnow())

                    # close the database session (if any)

        # Assign an id to the asynchronous task
        task_id = uuid.uuid4().hex

        # Record the task, and then launch it
        tasks[task_id] = {'task_thread': threading.Thread(
            target=task_call, args=(current_app._get_current_object(),
                               request.environ))}
        tasks[task_id]['task_thread'].start()

        # Return a 202 response, with a link that the client can use to
        # obtain task status
        print(url_for('gettaskstatus', task_id=task_id))
        return 'accepted', 202, {'Location': url_for('gettaskstatus', task_id=task_id)}
    return new_function


class GetTaskStatus(Resource):
    def get(self, task_id):
        """
        Return status about an asynchronous task. If this request returns a 202
        status code, it means that task hasn't finished yet. Else, the response
        from the task is returned.
        """
        task = tasks.get(task_id)
        if task is None:
            abort(404)
        if 'return_value' not in task:
            return '', 202, {'Location': url_for('gettaskstatus', task_id=task_id)}
        return task['return_value']


class CatchAll(Resource):
    @async_api
    def get(self, path=''):
        # perform some intensive processing
        print("starting processing task, path: '%s'" % path)
        time.sleep(10)
        print("completed processing task, path: '%s'" % path)
        return f'The answer is: {path}'


api.add_resource(CatchAll, '/<path:path>', '/')
api.add_resource(GetTaskStatus, '/status/<task_id>')


if __name__ == '__main__':
    app.run(debug=True)


回答 2

您也可以尝试使用daemon=True; 该process.start()方法不会阻止,您可以在后台执行昂贵的函数时立即将响应/状态返回给调用方。

在使用falcon框架并使用daemon过程帮助时,我遇到了类似的问题。

您需要执行以下操作:

from multiprocessing import Process

@app.route('/render/<id>', methods=['POST'])
def render_script(id=None):
    ...
    heavy_process = Process(  # Create a daemonic process with heavy "my_func"
        target=my_func,
        daemon=True
    )
    heavy_process.start()
    return Response(
        mimetype='application/json',
        status=200
    )

# Define some heavy function
def my_func():
    time.sleep(10)
    print("Process finished")

您应该立即得到响应,十秒钟后,您应该在控制台中看到打印的消息。

注意:请记住,daemonic不允许进程产生任何子进程。

You can also try using with daemon=True; the process.start() method does not block and you can return a response/status immediately to the caller while your expensive function executes in the background.

I experienced similar problem while working with falcon framework and using daemon process helped.

You’d need to do the following:

from multiprocessing import Process

@app.route('/render/<id>', methods=['POST'])
def render_script(id=None):
    ...
    heavy_process = Process(  # Create a daemonic process with heavy "my_func"
        target=my_func,
        daemon=True
    )
    heavy_process.start()
    return Response(
        mimetype='application/json',
        status=200
    )

# Define some heavy function
def my_func():
    time.sleep(10)
    print("Process finished")

You should get a response immediately and, after 10s you should see a printed message in the console.

NOTE: Keep in mind that daemonic processes are not allowed to spawn any child processes.


声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。