问题:namedtuple和可选关键字参数的默认值
我正在尝试将冗长的空心“数据”类转换为命名元组。我的Class目前看起来像这样:
class Node(object):
def __init__(self, val, left=None, right=None):
self.val = val
self.left = left
self.right = right
转换为namedtuple
它后看起来像:
from collections import namedtuple
Node = namedtuple('Node', 'val left right')
但是这里有一个问题。我的原始类允许我只传递一个值,并通过对named / keyword参数使用默认值来处理默认值。就像是:
class BinaryTree(object):
def __init__(self, val):
self.root = Node(val)
但这在我的重构命名元组的情况下不起作用,因为它希望我传递所有字段。我当然可以替换Node(val)
to 的出现,Node(val, None, None)
但是这并不是我喜欢的。
那么,是否存在一个可以使我的重写成功而又不增加很多代码复杂性(元编程)的好技巧,还是我应该吞下药丸并继续进行“搜索并替换”?:)
I’m trying to convert a longish hollow “data” class into a named tuple. My class currently looks like this:
class Node(object):
def __init__(self, val, left=None, right=None):
self.val = val
self.left = left
self.right = right
After conversion to namedtuple
it looks like:
from collections import namedtuple
Node = namedtuple('Node', 'val left right')
But there is a problem here. My original class allowed me to pass in just a value and took care of the default by using default values for the named/keyword arguments. Something like:
class BinaryTree(object):
def __init__(self, val):
self.root = Node(val)
But this doesn’t work in the case of my refactored named tuple since it expects me to pass all the fields. I can of course replace the occurrences of Node(val)
to Node(val, None, None)
but it isn’t to my liking.
So does there exist a good trick which can make my re-write successful without adding a lot of code complexity (metaprogramming) or should I just swallow the pill and go ahead with the “search and replace”? :)
回答 0
Python 3.7
使用默认参数。
>>> from collections import namedtuple
>>> fields = ('val', 'left', 'right')
>>> Node = namedtuple('Node', fields, defaults=(None,) * len(fields))
>>> Node()
Node(val=None, left=None, right=None)
或者更好的是,使用新的dataclasses库,它比namedtuple好得多。
>>> from dataclasses import dataclass
>>> from typing import Any
>>> @dataclass
... class Node:
... val: Any = None
... left: 'Node' = None
... right: 'Node' = None
>>> Node()
Node(val=None, left=None, right=None)
在Python 3.7之前
设置Node.__new__.__defaults__
为默认值。
>>> from collections import namedtuple
>>> Node = namedtuple('Node', 'val left right')
>>> Node.__new__.__defaults__ = (None,) * len(Node._fields)
>>> Node()
Node(val=None, left=None, right=None)
在Python 2.6之前
设置Node.__new__.func_defaults
为默认值。
>>> from collections import namedtuple
>>> Node = namedtuple('Node', 'val left right')
>>> Node.__new__.func_defaults = (None,) * len(Node._fields)
>>> Node()
Node(val=None, left=None, right=None)
订购
在所有版本的Python中,如果您设置的默认值少于namedtuple中的默认值,则默认值将应用于最右边的参数。这使您可以将一些参数保留为必需参数。
>>> Node.__new__.__defaults__ = (1,2)
>>> Node()
Traceback (most recent call last):
...
TypeError: __new__() missing 1 required positional argument: 'val'
>>> Node(3)
Node(val=3, left=1, right=2)
适用于Python 2.6到3.6的包装器
这是给您的包装器,甚至可以让您(可选)将默认值设置为以外的其他值None
。这不支持必需的参数。
import collections
def namedtuple_with_defaults(typename, field_names, default_values=()):
T = collections.namedtuple(typename, field_names)
T.__new__.__defaults__ = (None,) * len(T._fields)
if isinstance(default_values, collections.Mapping):
prototype = T(**default_values)
else:
prototype = T(*default_values)
T.__new__.__defaults__ = tuple(prototype)
return T
例:
>>> Node = namedtuple_with_defaults('Node', 'val left right')
>>> Node()
Node(val=None, left=None, right=None)
>>> Node = namedtuple_with_defaults('Node', 'val left right', [1, 2, 3])
>>> Node()
Node(val=1, left=2, right=3)
>>> Node = namedtuple_with_defaults('Node', 'val left right', {'right':7})
>>> Node()
Node(val=None, left=None, right=7)
>>> Node(4)
Node(val=4, left=None, right=7)
Python 3.7
Use the defaults parameter.
>>> from collections import namedtuple
>>> fields = ('val', 'left', 'right')
>>> Node = namedtuple('Node', fields, defaults=(None,) * len(fields))
>>> Node()
Node(val=None, left=None, right=None)
Or better yet, use the new dataclasses library, which is much nicer than namedtuple.
>>> from dataclasses import dataclass
>>> from typing import Any
>>> @dataclass
... class Node:
... val: Any = None
... left: 'Node' = None
... right: 'Node' = None
>>> Node()
Node(val=None, left=None, right=None)
Before Python 3.7
Set Node.__new__.__defaults__
to the default values.
>>> from collections import namedtuple
>>> Node = namedtuple('Node', 'val left right')
>>> Node.__new__.__defaults__ = (None,) * len(Node._fields)
>>> Node()
Node(val=None, left=None, right=None)
Before Python 2.6
Set Node.__new__.func_defaults
to the default values.
>>> from collections import namedtuple
>>> Node = namedtuple('Node', 'val left right')
>>> Node.__new__.func_defaults = (None,) * len(Node._fields)
>>> Node()
Node(val=None, left=None, right=None)
Order
In all versions of Python, if you set fewer default values than exist in the namedtuple, the defaults are applied to the rightmost parameters. This allows you to keep some arguments as required arguments.
>>> Node.__new__.__defaults__ = (1,2)
>>> Node()
Traceback (most recent call last):
...
TypeError: __new__() missing 1 required positional argument: 'val'
>>> Node(3)
Node(val=3, left=1, right=2)
Wrapper for Python 2.6 to 3.6
Here’s a wrapper for you, which even lets you (optionally) set the default values to something other than None
. This does not support required arguments.
import collections
def namedtuple_with_defaults(typename, field_names, default_values=()):
T = collections.namedtuple(typename, field_names)
T.__new__.__defaults__ = (None,) * len(T._fields)
if isinstance(default_values, collections.Mapping):
prototype = T(**default_values)
else:
prototype = T(*default_values)
T.__new__.__defaults__ = tuple(prototype)
return T
Example:
>>> Node = namedtuple_with_defaults('Node', 'val left right')
>>> Node()
Node(val=None, left=None, right=None)
>>> Node = namedtuple_with_defaults('Node', 'val left right', [1, 2, 3])
>>> Node()
Node(val=1, left=2, right=3)
>>> Node = namedtuple_with_defaults('Node', 'val left right', {'right':7})
>>> Node()
Node(val=None, left=None, right=7)
>>> Node(4)
Node(val=4, left=None, right=7)
回答 1
我将namedtuple子类化,并覆盖了该__new__
方法:
from collections import namedtuple
class Node(namedtuple('Node', ['value', 'left', 'right'])):
__slots__ = ()
def __new__(cls, value, left=None, right=None):
return super(Node, cls).__new__(cls, value, left, right)
这样可以保留直观的类型层次结构,而伪装成类的工厂函数则不会创建。
I subclassed namedtuple and overrode the __new__
method:
from collections import namedtuple
class Node(namedtuple('Node', ['value', 'left', 'right'])):
__slots__ = ()
def __new__(cls, value, left=None, right=None):
return super(Node, cls).__new__(cls, value, left, right)
This preserves an intuitive type hierarchy, which the creation of a factory function disguised as a class does not.
回答 2
将其包装在函数中。
NodeT = namedtuple('Node', 'val left right')
def Node(val, left=None, right=None):
return NodeT(val, left, right)
Wrap it in a function.
NodeT = namedtuple('Node', 'val left right')
def Node(val, left=None, right=None):
return NodeT(val, left, right)
回答 3
用法:
另外,如果您既需要默认值又需要可选的可变性,则Python 3.7将具有数据类(PEP 557),这些数据类在某些(很多情况下)可以替换namedtuple。
旁注:Python中当前
注释规范(
:
参数和变量之后的表达式以及
->
函数之后的表达式)的一个怪癖是它们在定义时间
*进行评估。因此,由于“一旦执行了整个类的主体,就定义了类名称”,因此
'Node'
上面的类字段中的注释必须是字符串,以避免NameError。
这种类型的提示称为“正向引用”([1],[2]),在PEP 563中, Python 3.7+将具有__future__
导入(默认情况下在4.0中启用),该导入将允许使用正向引用没有报价,则推迟评估。
*在运行时不评估仅AFAICT局部变量注释。(来源:PEP 526)
Usage:
Also, in case you need both default values and optional mutability, Python 3.7 is going to have data classes (PEP 557) that can in some (many?) cases replace namedtuples.
Sidenote: one quirk of the current specification of
annotations (expressions after
:
for parameters and variables and after
->
for functions) in Python is that they are evaluated at definition time
*. So, since “class names become defined once the entire body of the class has been executed”, the annotations for
'Node'
in the class fields above must be strings to avoid NameError.
This kind of type hints is called “forward reference” ([1], [2]), and with PEP 563 Python 3.7+ is going to have a __future__
import (to be enabled by default in 4.0) that will allow to use forward references without quotes, postponing their evaluation.
* AFAICT only local variable annotations are not evaluated at runtime. (source: PEP 526)
回答 4
这是直接来自docs的示例:
可以使用_replace()定制原型实例来实现默认值:
>>> Account = namedtuple('Account', 'owner balance transaction_count')
>>> default_account = Account('<owner name>', 0.0, 0)
>>> johns_account = default_account._replace(owner='John')
>>> janes_account = default_account._replace(owner='Jane')
因此,OP的示例为:
from collections import namedtuple
Node = namedtuple('Node', 'val left right')
default_node = Node(None, None, None)
example = default_node._replace(val="whut")
但是,我更喜欢这里给出的其他一些答案。我只是想添加此内容以保持完整性。
This is an example straight from the docs:
Default values can be implemented by using _replace() to customize a prototype instance:
>>> Account = namedtuple('Account', 'owner balance transaction_count')
>>> default_account = Account('<owner name>', 0.0, 0)
>>> johns_account = default_account._replace(owner='John')
>>> janes_account = default_account._replace(owner='Jane')
So, the OP’s example would be:
from collections import namedtuple
Node = namedtuple('Node', 'val left right')
default_node = Node(None, None, None)
example = default_node._replace(val="whut")
However, I like some of the other answers given here better. I just wanted to add this for completeness.
回答 5
我不确定仅内置的namedtuple是否有简单的方法。有一个很好的模块,称为recordtype,具有以下功能:
>>> from recordtype import recordtype
>>> Node = recordtype('Node', [('val', None), ('left', None), ('right', None)])
>>> Node(3)
Node(val=3, left=None, right=None)
>>> Node(3, 'L')
Node(val=3, left=L, right=None)
I’m not sure if there’s an easy way with just the built-in namedtuple. There’s a nice module called recordtype that has this functionality:
>>> from recordtype import recordtype
>>> Node = recordtype('Node', [('val', None), ('left', None), ('right', None)])
>>> Node(3)
Node(val=3, left=None, right=None)
>>> Node(3, 'L')
Node(val=3, left=L, right=None)
回答 6
这是一个受Justinfay的回答启发的更紧凑的版本:
from collections import namedtuple
from functools import partial
Node = namedtuple('Node', ('val left right'))
Node.__new__ = partial(Node.__new__, left=None, right=None)
Here is a more compact version inspired by justinfay’s answer:
from collections import namedtuple
from functools import partial
Node = namedtuple('Node', ('val left right'))
Node.__new__ = partial(Node.__new__, left=None, right=None)
回答 7
在python3.7 +中,有一个全新的defaults =关键字参数。
默认值可以是默认值,也可以是None
默认值的可迭代值。由于具有默认值的字段必须位于任何没有默认值的字段之后,因此默认值将应用于最右边的参数。举例来说,如果所述字段名是['x', 'y', 'z']
与默认值(1, 2)
,然后x
将所需要的参数,y
将默认为1
,和z
将默认2
。
用法示例:
$ ./python
Python 3.7.0b1+ (heads/3.7:4d65430, Feb 1 2018, 09:28:35)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from collections import namedtuple
>>> nt = namedtuple('nt', ('a', 'b', 'c'), defaults=(1, 2))
>>> nt(0)
nt(a=0, b=1, c=2)
>>> nt(0, 3)
nt(a=0, b=3, c=2)
>>> nt(0, c=3)
nt(a=0, b=1, c=3)
In python3.7+ there’s a brand new defaults= keyword argument.
defaults can be None
or an iterable of default values. Since fields with a default value must come after any fields without a default, the defaults are applied to the rightmost parameters. For example, if the fieldnames are ['x', 'y', 'z']
and the defaults are (1, 2)
, then x
will be a required argument, y
will default to 1
, and z
will default to 2
.
Example usage:
$ ./python
Python 3.7.0b1+ (heads/3.7:4d65430, Feb 1 2018, 09:28:35)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from collections import namedtuple
>>> nt = namedtuple('nt', ('a', 'b', 'c'), defaults=(1, 2))
>>> nt(0)
nt(a=0, b=1, c=2)
>>> nt(0, 3)
nt(a=0, b=3, c=2)
>>> nt(0, c=3)
nt(a=0, b=1, c=3)
回答 8
简短,简单,不会导致人们使用isinstance
不当:
class Node(namedtuple('Node', ('val', 'left', 'right'))):
@classmethod
def make(cls, val, left=None, right=None):
return cls(val, left, right)
# Example
x = Node.make(3)
x._replace(right=Node.make(4))
Short, simple, and doesn’t lead people to use isinstance
improperly:
class Node(namedtuple('Node', ('val', 'left', 'right'))):
@classmethod
def make(cls, val, left=None, right=None):
return cls(val, left, right)
# Example
x = Node.make(3)
x._replace(right=Node.make(4))
回答 9
一个稍微扩展的示例,使用以下命令初始化所有缺少的参数None
:
from collections import namedtuple
class Node(namedtuple('Node', ['value', 'left', 'right'])):
__slots__ = ()
def __new__(cls, *args, **kwargs):
# initialize missing kwargs with None
all_kwargs = {key: kwargs.get(key) for key in cls._fields}
return super(Node, cls).__new__(cls, *args, **all_kwargs)
A slightly extended example to initialize all missing arguments with None
:
from collections import namedtuple
class Node(namedtuple('Node', ['value', 'left', 'right'])):
__slots__ = ()
def __new__(cls, *args, **kwargs):
# initialize missing kwargs with None
all_kwargs = {key: kwargs.get(key) for key in cls._fields}
return super(Node, cls).__new__(cls, *args, **all_kwargs)
回答 10
Python 3.7:的介绍 defaults
在namedtuple定义中 param。
文档中显示的示例:
>>> Account = namedtuple('Account', ['type', 'balance'], defaults=[0])
>>> Account._fields_defaults
{'balance': 0}
>>> Account('premium')
Account(type='premium', balance=0)
在这里阅读更多。
Python 3.7: introduction of defaults
param in namedtuple definition.
Example as shown in the documentation:
>>> Account = namedtuple('Account', ['type', 'balance'], defaults=[0])
>>> Account._fields_defaults
{'balance': 0}
>>> Account('premium')
Account(type='premium', balance=0)
Read more here.
回答 11
您还可以使用以下命令:
import inspect
def namedtuple_with_defaults(type, default_value=None, **kwargs):
args_list = inspect.getargspec(type.__new__).args[1:]
params = dict([(x, default_value) for x in args_list])
params.update(kwargs)
return type(**params)
基本上,这使您可以构造具有默认值的任何命名元组,并仅覆盖所需的参数,例如:
import collections
Point = collections.namedtuple("Point", ["x", "y"])
namedtuple_with_defaults(Point)
>>> Point(x=None, y=None)
namedtuple_with_defaults(Point, x=1)
>>> Point(x=1, y=None)
You can also use this:
import inspect
def namedtuple_with_defaults(type, default_value=None, **kwargs):
args_list = inspect.getargspec(type.__new__).args[1:]
params = dict([(x, default_value) for x in args_list])
params.update(kwargs)
return type(**params)
This basically gives you the possibility to construct any named tuple with a default value and override just the parameters you need, for example:
import collections
Point = collections.namedtuple("Point", ["x", "y"])
namedtuple_with_defaults(Point)
>>> Point(x=None, y=None)
namedtuple_with_defaults(Point, x=1)
>>> Point(x=1, y=None)
回答 12
@Denis和@Mark的组合方法:
from collections import namedtuple
import inspect
class Node(namedtuple('Node', 'left right val')):
__slots__ = ()
def __new__(cls, *args, **kwargs):
args_list = inspect.getargspec(super(Node, cls).__new__).args[len(args)+1:]
params = {key: kwargs.get(key) for key in args_list + kwargs.keys()}
return super(Node, cls).__new__(cls, *args, **params)
那应该支持创建带有位置参数和混合大小写的元组。测试用例:
>>> print Node()
Node(left=None, right=None, val=None)
>>> print Node(1,2,3)
Node(left=1, right=2, val=3)
>>> print Node(1, right=2)
Node(left=1, right=2, val=None)
>>> print Node(1, right=2, val=100)
Node(left=1, right=2, val=100)
>>> print Node(left=1, right=2, val=100)
Node(left=1, right=2, val=100)
>>> print Node(left=1, right=2)
Node(left=1, right=2, val=None)
还支持TypeError:
>>> Node(1, left=2)
TypeError: __new__() got multiple values for keyword argument 'left'
Combining approaches of @Denis and @Mark:
from collections import namedtuple
import inspect
class Node(namedtuple('Node', 'left right val')):
__slots__ = ()
def __new__(cls, *args, **kwargs):
args_list = inspect.getargspec(super(Node, cls).__new__).args[len(args)+1:]
params = {key: kwargs.get(key) for key in args_list + kwargs.keys()}
return super(Node, cls).__new__(cls, *args, **params)
That should support creating the tuple with positional arguments and also with mixed cases. Test cases:
>>> print Node()
Node(left=None, right=None, val=None)
>>> print Node(1,2,3)
Node(left=1, right=2, val=3)
>>> print Node(1, right=2)
Node(left=1, right=2, val=None)
>>> print Node(1, right=2, val=100)
Node(left=1, right=2, val=100)
>>> print Node(left=1, right=2, val=100)
Node(left=1, right=2, val=100)
>>> print Node(left=1, right=2)
Node(left=1, right=2, val=None)
but also support TypeError:
>>> Node(1, left=2)
TypeError: __new__() got multiple values for keyword argument 'left'
回答 13
我发现此版本更易于阅读:
from collections import namedtuple
def my_tuple(**kwargs):
defaults = {
'a': 2.0,
'b': True,
'c': "hello",
}
default_tuple = namedtuple('MY_TUPLE', ' '.join(defaults.keys()))(*defaults.values())
return default_tuple._replace(**kwargs)
这并不是很有效,因为它需要两次创建对象,但是您可以通过在模块内定义默认的duple并让函数执行替换行来更改它。
I find this version easier to read:
from collections import namedtuple
def my_tuple(**kwargs):
defaults = {
'a': 2.0,
'b': True,
'c': "hello",
}
default_tuple = namedtuple('MY_TUPLE', ' '.join(defaults.keys()))(*defaults.values())
return default_tuple._replace(**kwargs)
This is not as efficient as it requires creation of the object twice but you could change that by defining the default duple inside the module and just having the function do the replace line.
回答 14
由于您是namedtuple
作为数据类使用的,因此应注意python 3.7 @dataclass
为此会引入一个装饰器-当然,它具有默认值。
来自docs的示例:
@dataclass
class C:
a: int # 'a' has no default value
b: int = 0 # assign a default value for 'b'
比黑客更干净,可读性和可用性更高namedtuple
。不难预测,namedtuple
随着3.7的采用,s的使用将下降。
Since you are using namedtuple
as a data class, you should be aware that python 3.7 will introduce a @dataclass
decorator for this very purpose — and of course it has default values.
An example from the docs:
@dataclass
class C:
a: int # 'a' has no default value
b: int = 0 # assign a default value for 'b'
Much cleaner, readable and usable than hacking namedtuple
. It is not hard to predict that usage of namedtuple
s will drop with the adoption of 3.7.
回答 15
受到对另一个问题的答案的启发,这是我建议的基于元类的解决方案,并使用super
(正确处理将来的子缩放)。这与Justinfay的答案非常相似。
from collections import namedtuple
NodeTuple = namedtuple("NodeTuple", ("val", "left", "right"))
class NodeMeta(type):
def __call__(cls, val, left=None, right=None):
return super(NodeMeta, cls).__call__(val, left, right)
class Node(NodeTuple, metaclass=NodeMeta):
__slots__ = ()
然后:
>>> Node(1, Node(2, Node(4)),(Node(3, None, Node(5))))
Node(val=1, left=Node(val=2, left=Node(val=4, left=None, right=None), right=None), right=Node(val=3, left=None, right=Node(val=5, left=None, right=None)))
Inspired by this answer to a different question, here is my proposed solution based on a metaclass and using super
(to handle future subcalssing correctly). It is quite similar to justinfay’s answer.
from collections import namedtuple
NodeTuple = namedtuple("NodeTuple", ("val", "left", "right"))
class NodeMeta(type):
def __call__(cls, val, left=None, right=None):
return super(NodeMeta, cls).__call__(val, left, right)
class Node(NodeTuple, metaclass=NodeMeta):
__slots__ = ()
Then:
>>> Node(1, Node(2, Node(4)),(Node(3, None, Node(5))))
Node(val=1, left=Node(val=2, left=Node(val=4, left=None, right=None), right=None), right=Node(val=3, left=None, right=Node(val=5, left=None, right=None)))
回答 16
jterrace使用recordtype的答案很好,但是该库的作者建议使用他的namedlist项目,该项目提供了mutable(namedlist
)和immutable(namedtuple
)实现。
from namedlist import namedtuple
>>> Node = namedtuple('Node', ['val', ('left', None), ('right', None)])
>>> Node(3)
Node(val=3, left=None, right=None)
>>> Node(3, 'L')
Node(val=3, left=L, right=None)
The answer by jterrace to use recordtype is great, but the author of the library recommends to use his namedlist project, which provides both mutable (namedlist
) and immutable (namedtuple
) implementations.
from namedlist import namedtuple
>>> Node = namedtuple('Node', ['val', ('left', None), ('right', None)])
>>> Node(3)
Node(val=3, left=None, right=None)
>>> Node(3, 'L')
Node(val=3, left=L, right=None)
回答 17
这是一个简短的,简单的通用答案,带有带有默认参数的命名元组的漂亮语法:
import collections
def dnamedtuple(typename, field_names, **defaults):
fields = sorted(field_names.split(), key=lambda x: x in defaults)
T = collections.namedtuple(typename, ' '.join(fields))
T.__new__.__defaults__ = tuple(defaults[field] for field in fields[-len(defaults):])
return T
用法:
Test = dnamedtuple('Test', 'one two three', two=2)
Test(1, 3) # Test(one=1, three=3, two=2)
缩小:
def dnamedtuple(tp, fs, **df):
fs = sorted(fs.split(), key=df.__contains__)
T = collections.namedtuple(tp, ' '.join(fs))
T.__new__.__defaults__ = tuple(df[i] for i in fs[-len(df):])
return T
Here’s a short, simple generic answer with a nice syntax for a named tuple with default arguments:
import collections
def dnamedtuple(typename, field_names, **defaults):
fields = sorted(field_names.split(), key=lambda x: x in defaults)
T = collections.namedtuple(typename, ' '.join(fields))
T.__new__.__defaults__ = tuple(defaults[field] for field in fields[-len(defaults):])
return T
Usage:
Test = dnamedtuple('Test', 'one two three', two=2)
Test(1, 3) # Test(one=1, three=3, two=2)
Minified:
def dnamedtuple(tp, fs, **df):
fs = sorted(fs.split(), key=df.__contains__)
T = collections.namedtuple(tp, ' '.join(fs))
T.__new__.__defaults__ = tuple(df[i] for i in fs[-len(df):])
return T
回答 18
使用NamedTuple
我Advanced Enum (aenum)
库中的类并使用class
语法,这非常简单:
from aenum import NamedTuple
class Node(NamedTuple):
val = 0
left = 1, 'previous Node', None
right = 2, 'next Node', None
一个潜在的缺点是,对于__doc__
具有默认值的任何属性都需要一个字符串(对于简单属性是可选的)。在使用中它看起来像:
>>> Node()
Traceback (most recent call last):
...
TypeError: values not provided for field(s): val
>>> Node(3)
Node(val=3, left=None, right=None)
它具有以下优点justinfay's answer
:
from collections import namedtuple
class Node(namedtuple('Node', ['value', 'left', 'right'])):
__slots__ = ()
def __new__(cls, value, left=None, right=None):
return super(Node, cls).__new__(cls, value, left, right)
是简单的,以及metaclass
基于基础而不是exec
基础。
Using the NamedTuple
class from my Advanced Enum (aenum)
library, and using the class
syntax, this is quite simple:
from aenum import NamedTuple
class Node(NamedTuple):
val = 0
left = 1, 'previous Node', None
right = 2, 'next Node', None
The one potential drawback is the requirement for a __doc__
string for any attribute with a default value (it’s optional for simple attributes). In use it looks like:
>>> Node()
Traceback (most recent call last):
...
TypeError: values not provided for field(s): val
>>> Node(3)
Node(val=3, left=None, right=None)
The advantages this has over justinfay's answer
:
from collections import namedtuple
class Node(namedtuple('Node', ['value', 'left', 'right'])):
__slots__ = ()
def __new__(cls, value, left=None, right=None):
return super(Node, cls).__new__(cls, value, left, right)
is simplicity, as well as being metaclass
based instead of exec
based.
回答 19
另一个解决方案:
import collections
def defaultargs(func, defaults):
def wrapper(*args, **kwargs):
for key, value in (x for x in defaults[len(args):] if len(x) == 2):
kwargs.setdefault(key, value)
return func(*args, **kwargs)
return wrapper
def namedtuple(name, fields):
NamedTuple = collections.namedtuple(name, [x[0] for x in fields])
NamedTuple.__new__ = defaultargs(NamedTuple.__new__, [(NamedTuple,)] + fields)
return NamedTuple
用法:
>>> Node = namedtuple('Node', [
... ('val',),
... ('left', None),
... ('right', None),
... ])
__main__.Node
>>> Node(1)
Node(val=1, left=None, right=None)
>>> Node(1, 2, right=3)
Node(val=1, left=2, right=3)
Another solution:
import collections
def defaultargs(func, defaults):
def wrapper(*args, **kwargs):
for key, value in (x for x in defaults[len(args):] if len(x) == 2):
kwargs.setdefault(key, value)
return func(*args, **kwargs)
return wrapper
def namedtuple(name, fields):
NamedTuple = collections.namedtuple(name, [x[0] for x in fields])
NamedTuple.__new__ = defaultargs(NamedTuple.__new__, [(NamedTuple,)] + fields)
return NamedTuple
Usage:
>>> Node = namedtuple('Node', [
... ('val',),
... ('left', None),
... ('right', None),
... ])
__main__.Node
>>> Node(1)
Node(val=1, left=None, right=None)
>>> Node(1, 2, right=3)
Node(val=1, left=2, right=3)
回答 20
这是Mark Lodato的包装器的一种不太灵活但更简洁的版本:它使用字段和默认值作为字典。
import collections
def namedtuple_with_defaults(typename, fields_dict):
T = collections.namedtuple(typename, ' '.join(fields_dict.keys()))
T.__new__.__defaults__ = tuple(fields_dict.values())
return T
例:
In[1]: fields = {'val': 1, 'left': 2, 'right':3}
In[2]: Node = namedtuple_with_defaults('Node', fields)
In[3]: Node()
Out[3]: Node(val=1, left=2, right=3)
In[4]: Node(4,5,6)
Out[4]: Node(val=4, left=5, right=6)
In[5]: Node(val=10)
Out[5]: Node(val=10, left=2, right=3)
Here’s a less flexible, but more concise version of Mark Lodato’s wrapper: It takes the fields and defaults as a dictionary.
import collections
def namedtuple_with_defaults(typename, fields_dict):
T = collections.namedtuple(typename, ' '.join(fields_dict.keys()))
T.__new__.__defaults__ = tuple(fields_dict.values())
return T
Example:
In[1]: fields = {'val': 1, 'left': 2, 'right':3}
In[2]: Node = namedtuple_with_defaults('Node', fields)
In[3]: Node()
Out[3]: Node(val=1, left=2, right=3)
In[4]: Node(4,5,6)
Out[4]: Node(val=4, left=5, right=6)
In[5]: Node(val=10)
Out[5]: Node(val=10, left=2, right=3)
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。