Introduction

本项目的目的是提供一门使用Python进行机器学习的全面而又简单的课程

Motivation

Machine Learning,作为一种工具Artificial Intelligence,是采用最广泛的科学领域之一。已经发表了大量关于机器学习的文献。本项目的目的是提供以下最重要的方面Machine Learning通过介绍一系列简单而全面的教程,您可以使用Python在这个项目中,我们使用了许多不同的众所周知的机器学习框架来构建我们的教程,例如Scikit-learn在本项目中,您将了解到:

  • 机器学习的定义是什么?
  • 它是什么时候开始的,趋势是什么?
  • 什么是机器学习类别和子类别?
  • 最常用的机器学习算法是什么?如何实现它们?

Machine Learning

标题 文档
机器学习导论 Overview

Machine Learning Basics

_img/intro.png
标题 代码 文档
线性回归 Python Tutorial
适配过高/适配不足 Python Tutorial
正则化 Python Tutorial
交叉验证 Python Tutorial

Supervised learning

_img/supervised.gif
标题 代码 文档
决策树 Python Tutorial
K-近邻 Python Tutorial
朴素贝叶斯 Python Tutorial
Logistic回归 Python Tutorial
支持向量机 Python Tutorial

Unsupervised learning

_img/unsupervised.gif
标题 代码 文档
群集 Python Tutorial
主成分分析 Python Tutorial

Deep Learning

_img/deeplearning.png
标题 代码 文档
神经网络概述 Python Tutorial
卷积神经网络 Python Tutorial
自动编码器 Python Tutorial
递归神经网络 Python IPython

Pull Request Process

请考虑以下标准,以便更好地帮助我们:

  1. 拉取请求主要预期为链接建议
  2. 请确保您建议的资源没有过时或损坏
  3. 在执行构建和创建拉入请求时,请确保在图层结束之前移除所有安装或构建依赖项
  4. 添加带有接口更改详细信息的注释,包括新的环境变量、暴露的端口、有用的文件位置和容器参数
  5. 一旦您获得至少一个其他开发人员的签字,您就可以合并拉取请求,或者如果您没有权限这样做,如果您相信所有检查都已通过,您可以请求所有者为您合并该请求

Final Note

我们期待着您的善意反馈。请帮助我们改进这个开源项目,让我们的工作做得更好。对于捐款,请创建拉取请求,我们会立即进行调查。再次感谢您的反馈和支持

Developers

创建者:机器学习思维模式[BlogGitHubTwitter]

主管:Amirsina Torfi[GitHubPersonal WebsiteLinkedin]

开发商:Brendan Sherman*,James E Hopkins*[Linkedin],扎克·史密斯[Linkedin]

注意事项:本项目已被开发为顶峰项目,由[CS 4624 Multimedia/ Hypertext course at Virginia Tech],并由[Machine Learning Mindset]

*:平均分担

Citation

如果您觉得本课程有用,请考虑引用如下内容:

@software{amirsina_torfi_2019_3585763,
  author       = {Amirsina Torfi and
                  Brendan Sherman and
                  Jay Hopkins and
                  Eric Wynn and
                  hokie45 and
                  Frederik De Bleser and
                  李明岳 and
                  Samuel Husso and
                  Alain},
  title        = {{machinelearningmindset/machine-learning-course:
                   Machine Learning with Python}},
  month        = dec,
  year         = 2019,
  publisher    = {Zenodo},
  version      = {1.0},
  doi          = {10.5281/zenodo.3585763},
  url          = {https://doi.org/10.5281/zenodo.3585763}
}
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。