Cufflinks实战教程—1行python代码就可实现炫酷可视化

作者:python数据分析之禅

来源:小dull鸟

之前画图一直在用matlibplot、pyecharts,最近学习了一个新的可视化库–cufflinks,用了两天我已经深深爱上它了

主要是因为它用法简单、图形漂亮、代码量少,用一两行代码,就能画出非常漂亮的图形

下面我们一起来看看吧!

1.用法简单

cufflinks库主要和dataFrame数据结合使用,绘图函数就是 dataFrame.iplot,记住这个就行了,但是 iplot 函数里的参数很多,一些参数说明如下:

1. kind:图的种类,如 scatter、pie、histogram 等
2. mode:lines、markers、lines+markers,分别表示折线、点、折线和点
3. colors:轨迹对应的颜色
4. dash:轨迹对应的虚实线,solid、dash、dashdot 三种
5. width:轨迹的粗细
6. xTitle:横坐标名称
7. yTitle:纵坐标的名称
8. title:图表的标题

如下图,df为随机生成的dataFrame数据,kind=’bar’表示柱状图,title代表标题,xTitle命名X轴,yTitle命名Y轴:

import pandas as pd
import numpy as np
import cufflinks as cf
df=pd.DataFrame(np.random.rand(124), columns=['a''b''c''d'])
df.iplot(kind ='bar',title='示例', xTitle = 'X轴', yTitle ='Y轴')

2.少量代码就能画出非常漂亮的图形

cufflinks为我们提供了丰富的主题样式,支持包括polar、pearl、henanigans、solar、ggplot、space和white等7种主题。

折线图

cf.datagen.lines(4,10).iplot(mode='lines+markers',theme='solar')

cufflinks使用datagen生成随机数,figure定义为lines形式,cf.datagen.lines(2,10)的具体形式如下:

cf.datagen.lines(2,10)  #2代表2组,10代表10天
  WCB.EH OAA.CQ
2015-01-01 -0.052580 -0.351618
2015-01-02 1.056254 -1.476417
2015-01-03 0.078017 1.129168
2015-01-04 0.282141 0.908655
2015-01-05 0.960537 -0.223996
2015-01-06 1.420355 0.212851
2015-01-07 2.266144 0.358502
2015-01-08 0.008034 1.086130
2015-01-09 1.876946 2.226895
2015-01-10 1.855625 2.852383

散点图

df = pd.DataFrame(np.random.rand(504), columns=['a''b''c''d'])
df.iplot(kind='scatter',mode='markers',colors=['orange','teal','blue','yellow'],size=20,theme='solar')

气泡图

df.iplot(kind='bubble',x='a',y='b',size='c',theme='solar')

subplots 子图

df=cf.datagen.lines(4)
df.iplot(subplots=True,shape=(4,1),shared_xaxes=True,vertical_spacing=.02,fill=True,theme='ggplot')

箱形图

cf.datagen.box(20).iplot(kind='box',legend=False,theme='ggplot')

 

直方图

df.iloc[:,0:3].iplot(kind='histogram')

 

3D图

cf.datagen.scatter3d(5,4).iplot(kind='scatter3d',x='x',y='y',z='z',text='text',categories='categories')

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!

给作者打赏,选择打赏金额
¥1¥5¥10¥20¥50¥100¥200 自定义

​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Python 想了解EventLoop?这篇文章就够了

原文来自 python-parallel-programming-cookbook-cn

Python的Asyncio模块提供了管理事件、协程、任务和线程的方法,以及编写并发代码的原语。此模块的主要组件和概念包括:

  • 事件循环: 在Asyncio模块中,每一个进程都有一个事件循环。
  • 协程: 这是子程序的泛化概念。协程可以在执行期间暂停,这样就可以等待外部的处理(例如IO)完成之后,从之前暂停的地方恢复执行。
  • Futures: 定义了 Future 对象,和 concurrent.futures 模块一样,表示尚未完成的计算。
  • Tasks: 这是Asyncio的子类,用于封装和管理并行模式下的协程。

本节中重点讨论事件,事实上,异步编程的上下文中,事件无比重要。因为事件的本质就是异步。

1. 什么是事件循环

在计算系统中,可以产生事件的实体叫做事件源,能处理事件的实体叫做事件处理者。此外,还有一些第三方实体叫做事件循环。它的作用是管理所有的事件,在整个程序运行过程中不断循环执行,追踪事件发生的顺序将它们放到队列中,当主线程空闲的时候,调用相应的事件处理者处理事件。最后,我们可以通过下面的伪代码来理解事件循环::

while(1) {
  events = getEvents();
  for (e in events)
    processEvent(e);
}

所有的事件都在 while 循环中捕捉,然后经过事件处理者处理。事件处理的部分是系统唯一活跃的部分,当一个事件处理完成,流程继续处理下一个事件。

2. 准备工作

Asyncio提供了一下方法来管理事件循环:

  • loop = get_event_loop(): 得到当前上下文的事件循环。
  • loop.call_later(time_delay, callback, argument): 延后 time_delay 秒再执行 callback 方法。
  • loop.call_soon(callback, argument): 尽可能快调用 callbackcall_soon() 函数结束,主线程回到事件循环之后就会马上调用 callback 。
  • loop.time(): 以float类型返回当前事件循环的内部时间。
  • asyncio.set_event_loop(): 为当前上下文设置事件循环。
  • asyncio.new_event_loop(): 根据此策略创建一个新的事件循环并返回。
  • loop.run_forever(): 在调用 stop() 之前将一直运行。

3. 如何做…

下面的代码中,我们将展示如何使用Asyncio库提供的事件循环创建异步模式的应用。

import asyncio
import datetime
import time

def function_1(end_time, loop):
    print("function_1 called")
    if (loop.time() + 1.0) < end_time:
        loop.call_later(1, function_2, end_time, loop)
    else:
        loop.stop()

def function_2(end_time, loop):
    print("function_2 called ")
    if (loop.time() + 1.0) < end_time:
        loop.call_later(1, function_3, end_time, loop)
    else:
        loop.stop()

def function_3(end_time, loop):
    print("function_3 called")
    if (loop.time() + 1.0) < end_time:
        loop.call_later(1, function_1, end_time, loop)
    else:
        loop.stop()

def function_4(end_time, loop):
    print("function_5 called")
    if (loop.time() + 1.0) < end_time:
        loop.call_later(1, function_4, end_time, loop)
    else:
        loop.stop()

loop = asyncio.get_event_loop()

end_loop = loop.time() + 9.0
loop.call_soon(function_1, end_loop, loop)
# loop.call_soon(function_4, end_loop, loop)
loop.run_forever()
loop.close()

运行结果如下::

python3 event.py
function_1 called
function_2 called
function_3 called
function_1 called
function_2 called
function_3 called
function_1 called
function_2 called
function_3 called

在这个例子中,我们定义了三个异步的任务,相继执行,入下图所示的顺序。

首先,我们要得到这个事件循环::

loop = asyncio.get_event_loop()

然后我们通过 call_soon 方法调用了 function_1() 函数。

end_loop = loop.time() + 9.0
loop.call_soon(function_1, end_loop, loop)

让我们来看一下 function_1() 的定义::

def function_1(end_time, loop):
    print("function_1 called")
    if (loop.time() + 1.0) < end_time:
        loop.call_later(1, function_2, end_time, loop)
    else:
        loop.stop()

这个函数通过以下参数定义了应用的异步行为:

  • end_time: 定义了 function_1() 可以运行的最长时间,并通过 call_later 方法传入到 function_2() 中作为参数
  • loop: 之前通过 get_event_loop() 方法得到的事件循环

function_1() 的任务非常简单,只是打印出函数名字。当然,里面也可以写非常复杂的操作。

print("function_1 called")

任务执行结束之后,它将会比较 loop.time() +1s和设定的运行时间,如果没有超过,使用 call_later 在1秒之后执行 function_2() 。

if (loop.time() + 1.0) < end_time:
    loop.call_later(1, function_2, end_time, loop)
else:
    loop.stop()

function_2() 和 function_3() 的作用类似。

如果运行的时间超过了设定,事件循环终止。

loop.run_forever()
loop.close()

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!

给作者打赏,选择打赏金额
¥1¥5¥10¥20¥50¥100¥200 自定义

​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Python 超强大的PDF表格提取器 — Camelot

如果你有从PDF中批量提取表格的需求,那么这篇文章就是你的福音。

Python 第三方模块 Camelot 能够精准识别PDF中的表格信息,并提取为pandas数据结构,而且还能导出为多种格式:JSON,Excel,HTML和Sqlite。

下面给大家介绍这个模块的使用方法:

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,请访问这篇文章:超详细Python安装指南 进行安装。

(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda,它内置了Python和pip.

(可选2) 此外,推荐大家用VSCode编辑器来编写小型Python项目:Python 编程的最好搭档—VSCode 详细指南

Windows环境下打开Cmd(开始—运行—CMD),苹果系统环境下请打开Terminal(command+空格输入Terminal),输入命令安装依赖:

pip install camelot-py[cv]

2.使用

最简单的使用方式如下:

import camelot
# 1.读取pdf
tables = camelot.read_pdf('foo.pdf', flavor='stream')
# 2.导出pdf所有的表格为csv文件
tables.export('foo.csv', f='csv') # json, excel, html, sqlite

第一行,导入了camelot这个模块。

第二行,以stream的模式读取当前目录的foo.pdf文件。

第三行,将所有表格数据导出为 foo.csv 文件,并保存在当前文件夹下。

相当简单,请注意,read_pdf 的 flavor 参数是可选的,如果你不带这个参数,请注意需要安装 ghostscript 这个驱动,因为它默认使用 ghostscript 去用 lattice 模式。

3.进阶

3.1 处理背景线:

可以看到,很多表格的线都隐藏在背景中。这种表格默认是不支持的,这时候我们需要让程序能够自动识别这样的表格:

tables = camelot.read_pdf('background_lines.pdf', process_background=True)

增加 process_background=True 参数即可。

3.2 指定表格区域

某些情况下无法正确识别到PDF中的表格,此时手动设定左上角和右下角的边界可能是有效果的:

tables = camelot.read_pdf('table_areas.pdf', flavor='stream', table_areas=['316,499,566,337'])

其中 table_areas 接受格式为 x1,y1,x2,y2 的字符串,其中(x1,y1) -> 左上角, (x2,y2) -> 右下角。在PDF坐标空间中,页面的左下角是原点,坐标为(0,0)。

本文的代码和示例,以及Camelot源仓库可在 Python实用宝典 公众号后台回复 camelot 下载。

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!

给作者打赏,选择打赏金额
¥1¥5¥10¥20¥50¥100¥200 自定义

​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

py-spy:Python 程序的性能监控器

py-spy是用于Python程序的性能监控器。它使你可以直观地看到Python程序花费的时间,而无需重新启动程序或以任何方式修改代码。

py-spy的开销非常低:为了最大化提高速度,它是用Rust编写的,并且与配置的Python程序不在同一进程中运行。这意味着 py-spy 可以安全地用于生产环境的Python程序。

py-spy 可在 Linux,OSX,Windows 和 FreeBSD 上运行,并支持所有最新版本的CPython解释器(2.3-2.7和3.3-3.8版)进行性能分析。

1.安装

可以通过以下方式从 PyPI 安装预构建的二进制wheel文件:

pip install py-spy

你也可以从 GitHub Release Page 下载预构建的二进制文件,如果网络无法连接GitHub,你也可在 Python实用宝典 公众号后台回复 pyspy 下载。

2.用法

py-spy 在命令行中进行工作,获取你要从监控的程序的PID或你要运行的python程序的文件。分别有三种分析方法  recordtop以及dump

record

py-spy支持使用record命令将配置文件记录到文件中。例如,您可以通过执行以下操作来生成python进程的热力图

py-spy record -o profile.svg --pid 12345
# OR
py-spy record -o profile.svg -- python myprogram.py

它将生成一个交互式SVG文件,如下所示:

你可以使用参数 –format 更改文件格式。请参阅参考资料,py-spy record --help 以获取有关其他选项的信息,包括更改采样率,仅包含GIL的线程进行过滤,对本机C扩展进行概要分析,显示线程ID,概要分析子进程等。

Top

Top显示了在python程序中花费最多时间的函数的实时视图,类似于Unix top命令。使用以下命令运行:

py-spy top --pid 12345
# OR
py-spy top -- python myprogram.py

将显示你的python程序的实时函数消耗:

Dump

py-spy 还可以使用 dump 命令显示每个 python 线程的当前调用堆栈:

py-spy dump --pid 12345

这会将每个线程的调用堆栈以及其他一些基本进程信息转发到控制台:

对于需要一个调用堆栈来确定python程序挂在何处的情况,这很有用。该命令还可以通过设置 --locals 标志来打印出与每个堆栈帧关联的局部变量。

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!

给作者打赏,选择打赏金额
¥1¥5¥10¥20¥50¥100¥200 自定义

​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Pandas 实现列表分列与字典分列及三个实例

本文讲解了列表和字典转化为pandas的列的多种方法及实战例子和教程。

1.问题来源

源于林胖发出的一道基础题:

2.解法

2.1 基础解法explode函数

这道题最简单的解法,相信大部分用过pandas的朋友都会,林胖也马上发出了自己的答案:

import pandas as pd

mydict = {'A': [1], 'B': [2, 3], 'C': [4, 5, 6]}
pd.DataFrame(mydict.items()).explode(1)

结果:

详解

mydict.items()是python基础字典的内容,它返回了这个字典键值对组成的元组列表:

mydict.items()

返回:

dict_items([('A', [1]), ('B', [2, 3]), ('C', [4, 5, 6])])

将这个内部是元组的可迭代对象传入DataFrame的构造函数中:

pd.DataFrame(mydict.items())

返回结果:

这是pandas最基础的开篇知识点使用可迭代对象构造DataFrame,列表的每个元素都是整个DataFrame对应的一行,而这个元素内部迭代出来的每个元素将构成DataFrame的某一列。

然后再看看这个explode函数,它是pandas 0.25版本才出现的函数,只有一个参数可以传入列名,然后该函数就可以把该列的列表每个元素扩展到多行上。

效果与hive使用lateral view+explode实现的效果几乎一致,类似于:

select a,b_i from df lateral view explode(b) tmp as b_i;

可以参考很早之前的一篇文章:https://blog.csdn.net/as604049322/article/details/105985770

2.2 没有exlode函数如何解决这个问题

但是,黄佬说版本太低没有这个函数,于是我给群友们出了一道题:

在黄佬的邀请下,一位经过我多次辅导的群友率先使用了循环法解题:

我觉得非常棒,但我也希望看到有人再用变形法实现一次。林胖和一位群友再次给出了简化版本的循环解法:

经过一番提示后,小五哥和林胖终于给出了变形法的解法:

非常不错,群友们终于独立的多思路解决了这个问题,真的要撒花呀!!!

下面我们详细分析一下,循环法和变形法的解法吧:

2.3 循环法解题

基本写法:

result = []
for k, vs in mydict.items():
    for v in vs:
        result.append((k, v))
pd.DataFrame(result)

本质上就是实现了一个笛卡尔积的拉平操作,将mydict.items这个可迭代对象的元组构造笛卡尔积并按照整体拉平。

上面的基本写法,应该99%以上的朋友都能看懂,但 林胖 的循环简化解法:

import itertools
result = []
for k, v in mydict.items():
    result.extend(itertools.product(k, v))
pd.DataFrame(result)

部分朋友可能没有看明白,这个就需要查询一下product方法的官方文档(https://docs.python.org/zh-cn/3.7/library/itertools.html?highlight=product#itertools.product):

product(*iterables, repeat=1) --> product object

参数:

  • iterables 为可迭代对象
  • 可选参数repeat 表示重复次数

用于生成可迭代对象输入的笛卡儿积,相当于生成器表达式中的嵌套循环。

例如:product(A, B) 中的元素A和B将共同构成可迭代元素[A, B]作为iterables传入和 ((x,y) for x in A for y in B) 返回结果一样。

返回示例:

  • product(‘ab’, range(3)) –> (‘a’,0) (‘a’,1) (‘a’,2) (‘b’,0) (‘b’,1) (‘b’,2)
  • product((0,1), (0,1), (0,1)) –> (0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) …

也可以传入可选参数 repeat 表示重复的次数:例如,product(A, repeat=4)product(A, A, A, A) 的返回结果是一样的。


列表的extend方法是将可迭代对象的每个元素都添加到列表中,而append方法只能添加单个元素。

当然,我们还可以将整个for循环改写成列表生成式:

result = [(k, v) for k, vs in mydict.items() for v in vs]
pd.DataFrame(result)

也可以简化代码量。

2.4 变形法解题

df = pd.DataFrame(mydict.items(), columns=["a", "b"])
df

实现思路,上面的界面是下面最左边:

2.4.1 列表分列的2种方法

列表分列的思路:Pandas的Series对象调用apply方法单个元素返回的结果是Series时,这个Series的每个数据会作为Datafrem的每一列,索引会作为列名。

对Series进行列表分列

例如:

df["b"].apply(pd.Series)

结果:

不过这样会丢失原本的”a”列,我们可以先将”a”列设置为索引,再进行Series分列操作:

df.set_index("a")["b"].apply(pd.Series)

或者把结果设置成原本的”a”列为索引:

df["b"].apply(pd.Series).set_index(df["a"])

结果均为上述实现思路的第二步。

直接对Datafream进行列表分列

如果我们希望直接使用Datafream实现分列可以借助agg方法,因为agg方法是对每一列的Series对象操作:

df.agg({"a": lambda x: x, "b": pd.Series})

结果:

但这操作导致列多了一个级别,需要删除:

df.agg({"a": lambda x: x, "b": pd.Series}).droplevel(0, axis=1)

结果:

只要再执行set_index("a")

df.agg({"a": lambda x: x, "b": pd.Series}).droplevel(0, axis=1).set_index("a")

结果就会与实现思路的第二步结果一致。

2.4.2 将字典的键作为索引的2种读取方法

当然上面我只是为了给大家讲述分列的一些方法。对于这个例子,其实我们可以直接通过pd.DataFrame.from_dict方法orient参数传入’index’,直接获得第二步的结果(只是索引没有名称):

df = pd.DataFrame.from_dict(mydict, 'index')

或者分别传入data和索引index:

df = pd.DataFrame(data=mydict.values(), index=mydict.keys())

都能得到以下结果:

2.4.3 melt实现逆透视

说起逆透视我个人首先想到了melt方法,然后才想到melt方法实现的本质用到了stack方法。

为了避免索引丢失,我们首先还原索引为普通的列:

df = df.rename_axis(index="a").reset_index()
df

结果:

然后使用melt方法进行逆透视:

df.melt(id_vars='a', value_name='b')

结果:

然后删除第二列,再删除空值行,再将数值列转换为整数类型就搞定。

最终代码:

df = pd.DataFrame.from_dict(mydict, 'index')
df = df.melt(id_vars='a', value_name='b').drop(columns="variable").dropna()
df.b = df.b.astype("int")
df

成功得到结果:

2.4.4 stack实现逆透视

df = pd.DataFrame.from_dict(mydict, 'index')
df.stack()

结果:

A  0    1.0
B  0    2.0
   1    3.0
C  0    4.0
   1    5.0
   2    6.0
dtype: float64

结果返回了一个多级索引的Series,我们首先需要删除索引中多余的部分:

df.stack().droplevel(1)

结果:

A    1.0
B    2.0
B    3.0
C    4.0
C    5.0
C    6.0
dtype: float64

此时我们再还原索引到普通列:

df.stack().droplevel(1).reset_index()

再重新设置一下列名:

df.stack().droplevel(1).reset_index().set_axis(["a", "b"], axis=1)

最后重设一下B列的类型:

df.b = df.b.astype("int")

最终代码:

df = pd.DataFrame.from_dict(mydict, 'index')
df = df.stack().droplevel(1).reset_index().set_axis(["a", "b"], axis=1)
df.b = df.b.astype("int")
df

结果:

2.实际应用

这次我将分享三个实际案例,让大家看看列表分列的一些实际应用。

首先,我们先导包并设置Pandas显示参数:

import pandas as pd
pd.set_option("display.max_colwidth"100)

正则提取并分列

需求:

读取数据:

df = pd.read_excel("正则提取与分列.xlsm", usecols=[0])
df.head()

结果:

实现代码:

result = df.copy()
result["tmp"] = result["补回原因"].str.findall("([\d.]+[到至][\d.]+)")
result = result.agg({"补回原因"lambda x: x, "tmp": pd.Series}).droplevel(0, axis=1)
result.head()

结果:

分步解析:

df["tmp"] = df["补回原因"].str.findall("([\d.]+[到至][\d.]+)")
df.head(5)

结果:

这步使用正则提取出每个日期字符串,[\d.]+表示连续的数字或.用于匹配时间字符串,两个时间之间的连接字符可能是到或至。

然后我使用agg函数直接对Datafream分列:

df.agg({"补回原因"lambda x: x, "tmp": pd.Series})

结果:

由于列索引多了一级,所以需要删除:

df.agg({"补回原因"lambda x: x, "tmp": pd.Series}).droplevel(0, axis=1).head()

结果:

droplevel(0, axis=1)用于删除多级索引指定的级别,axis=0可以删除行索引,axis=1则可以删除列索引,第一参数表示删除级别0。当然如果列索引存在名称时还可以传入名称字符串,可参考官网文档:

df = pd.DataFrame([
...     [1234],
...     [5678],
...     [9101112]
... ]).set_index([01]).rename_axis(['a''b'])
>>> df.columns = pd.MultiIndex.from_tuples([
...    ('c''e'), ('d''f')
... ], names=['level_1''level_2'])
>>> df
level_1   c   d
level_2   e   f
a b
1 2      3   4
5 6      7   8
9 10    11  12
>>> df.droplevel('a')
level_1   c   d
level_2   e   f
b
2        3   4
6        7   8
10      11  12
>>> df.droplevel('level2', axis=1)
level_1   c   d
a b
1 2      3   4
5 6      7   8
9 10    11  12

分组聚合并分列

需求:

首先,读取数据:

df = pd.read_excel("分组聚合并分列.xlsx")
df

结果:

实现代码:

(
    df.groupby("姓名")["得分"]
    .apply(list)
    .apply(pd.Series)
    .fillna("")
    .rename(columns=lambda x: f"得分{x+1}")
    .reset_index()
    .astype({"得分1":"int8"})
)

结果:

分布解析:

首先将每个姓名的得分聚合成列表,并最终返回一个Series:

df.groupby("姓名")["得分"].apply(list)

结果:

姓名
孙四娘          [7, 28]
看见星光    [88, 28, 23]
看见月光    [69, 10, 87]
老祝          [51, 29]
马青梅             [99]
Name: 得分, dtype: object

当然,这步的标准写法应该是使用Series的内部方法:

df.groupby("姓名")["得分"].apply(lambda x:x.to_list())

使用Series内部方法的性能比python列表方法转换快一些。

作为一个Series就可以通过将每个列表元素转换为Series,从而最终返回一个分列的Datafream:

_.apply(pd.Series)

结果:

注意:_在ipython表示上一个输出返回的结果,jupyter还额外支持_num表示num编号单元格的输出。

_.fillna("")

结果:

fillna表示填充缺失值,传入””表示将缺失值填充为空字符串。

下面重命名一下列名:

_.rename(columns=lambda x: f"得分{x+1}")

结果:

然后还原索引:

_.reset_index()

结果:

发现结果中有一列,不是整数,所以还原成整数(总分100分,8位足够存储):

_.astype({"得分1":"int8"})

结果:

解析json字符串并字典分列

需求:

首先读取数据:

df = pd.read_excel("字典分列.xlsx")
df.head()

结果:

处理代码:

result = df.features.apply(eval).apply(pd.Series)
result["counts"] = df.counts
result

结果:

  储存条件 品牌 推荐理由 品种 食用方式 是否进口 特色服务 是否有机 counts
0 常温 NaN NaN NaN NaN NaN NaN NaN 33
1 冷藏 NaN NaN NaN NaN NaN NaN NaN 24
2 常温 禾煜 NaN NaN NaN NaN NaN NaN 22
3 常温 妙洁 NaN NaN NaN NaN NaN NaN 16
4 冷冻 NaN NaN NaN NaN NaN NaN NaN 14
2083 常温 乐事 够薄够脆 NaN NaN NaN NaN NaN 1
2084 冷藏 NaN 生态种植 黄瓜 NaN NaN NaN 有机 1
2085 冷藏 NaN 腥味较淡 鲫鱼 NaN NaN 免费宰杀 NaN 1
2086 冷藏 NaN 甜脆可口 佛手瓜 NaN NaN NaN NaN 1
2087 冷藏 叮咚日日鲜 全程可追溯 猪小排 NaN NaN NaN NaN 1

2088 rows × 9 columns

浅析:

df.features.apply(eval)用于将features列的每个json字符串解析为字典对象。

**.apply(pd.Series)则可以将每个字典对象转换成Series,则可以将该字典扩展到多列,并将原始的Series转换为Datafream。

result["counts"] = df.counts则将原始数据的counts列添加到结果列中。

本文转自快学Python,有部分增删。

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!

给作者打赏,选择打赏金额
¥1¥5¥10¥20¥50¥100¥200 自定义

​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Pandas实战教程:将Excel转为html格式

大家谈及用Pandas导出数据,应该就会想到to.xxx系列的函数。

这其中呢,比较常用的就是pd.to_csv()pd.to_excel()。但其实还可以将其导成Html网页格式,这里用到的函数就是pd.to_html()

读取Excel

今天我们要实现Excel转为html格式,首先需要用读取Excel中的表格数据。

import pandas as pd
data = pd.read_excel('测试.xlsx')

查看数据

data.head()

下面我们来学习把DataFrame转换成HTML表格的方法。

生成Html

to_html()函数可以直接把DataFrame转换成HTML表格,只需一行代码即可实现:

html_table = data.to_html('测试.html')

运行上面代码后,工作目录中多了测试.html文件,使用网页浏览器打开它,显示内容如下👇

print(data.to_html())

通过print打印,可以看到DataFrame的内部结构被自动转换为嵌入在表格中的<TH>,<TR>,<TD>标签,保留所有内部层级结构。

调整格式

我们还可以自定义修改参数,来调整生成HTML的格式。

html_table = data.to_html('测试.html',header = True,index = False,justify='center')

再次打开新生成的测试.html文件,发现格式已经发生了变化。

如果想对格式进行进一步调整(增加标题、修改颜色等),就需要一些HTML知识了,可以对生成的测试.html文件中的文本进行调整。

对于有些小伙伴可能需要进行页面展示,就要搭配Flask库来使用了。

小结

Pandas提供read_html()to_html()两个函数用于读写html格式的文件。这两个函数非常有用,一个轻松将DataFrame等复杂的数据结构转换成HTML表格;另一个不用复杂爬虫,简单几行代码即可抓取Table表格型数据,简直是个神器!

今天篇幅很短,主要讲了Pandas中to_html()这个函数。使用该函数最大的优点是:我们在不了解html知识的情况下,就能生成一个表格型的HTML。本文转自快学Python

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!

给作者打赏,选择打赏金额
¥1¥5¥10¥20¥50¥100¥200 自定义

​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Python 超方便的迭代进度条 (Tqdm)

Tqdm 是一个智能进度表。它能够显示所有可迭代对象当前执行的进度。

你只需要用 tqdm 对可迭代对象进行封装后再遍历即可实现进度条功能,比如说:

from tqdm import tqdm
for i in tqdm(range(10000)):
    ...

显示效果如下:

76%|████████████████████████ | 7568/10000 [00:33<00:10, 229.00it/s]

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,请访问这篇文章:超详细Python安装指南 进行安装。

(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda,它内置了Python和pip.

(可选2) 此外,推荐大家用VSCode编辑器来编写小型Python项目:Python 编程的最好搭档—VSCode 详细指南

Windows环境下打开Cmd(开始—运行—CMD),苹果系统环境下请打开Terminal(command+空格输入Terminal),输入命令安装依赖:

pip install tqdm

2.基本使用

tqdm 非常灵活,可以使用多种方式调用。下面给出了三个主要的形式。

2.1 迭代的形式

使用tqdm()封装可迭代的对象:

from tqdm import tqdm
from time import sleep

text = ""
for char in tqdm(["a", "b", "c", "d"]):
    sleep(0.25)
    text = text + char

trange(i)是特殊的关键字,是封装了range的tqdm对象:

from tqdm import trange

for i in trange(100):
    sleep(0.01)

你还能控制进度条显示当前步骤的名称:

pbar = tqdm(["a", "b", "c", "d"])
for char in pbar:
    sleep(0.25)
    pbar.set_description("Processing %s" % char)

Processing d: 100%|█████████████████████████████████████████████| 4/4 [00:01<00:00, 3.99it/s]

2.2 手动的形式

除了迭代的形式,你可以手动控制进度,加一个tqdm上下文即可:

with tqdm(total=100) as pbar:
    for i in range(10):
        sleep(0.1)
        pbar.update(10)

上述例子中,pbar 是 tpdm 的“进度”,每一次对 pbar 进行 update 10 都相当于进度加10。

Total 的值即是总进度,这里 total 的值是100,那么pbar加到100的时候进度也就结束了。

你也可以选择不使用上下文的形式调用,但要记得结束后对对象进行关闭操作:

pbar = tqdm(total=100)
for i in range(10):
    sleep(0.1)
    pbar.update(10)
pbar.close()

3.模块结合

Tqdm 最妙的地方在于能在命令行中结合使用:

$ find . -name '*.py' -type f -exec cat \{} \; |
    tqdm --unit loc --unit_scale --total 857366 >> /dev/null
100%|█████████████████████████████████| 857K/857K [00:04<00:00, 246Kloc/s]

只需在管道之间插入tqdm(或python -m tqdm),即可将进度条显示到终端上。

备份大目录:

$ tar -zcf - docs/ | tqdm --bytes --total `du -sb docs/ | cut -f1` \
  > backup.tgz
 44%|██████████████▊                   | 153M/352M [00:14<00:18, 11.0MB/s]

这可以进一步美化:

$ BYTES="$(du -sb docs/ | cut -f1)"
$ tar -cf - docs/ \
  | tqdm --bytes --total "$BYTES" --desc Processing | gzip \
  | tqdm --bytes --total "$BYTES" --desc Compressed --position 1 \
  > ~/backup.tgz
Processing: 100%|██████████████████████| 352M/352M [00:14<00:00, 30.2MB/s]
Compressed:  42%|█████████▎            | 148M/352M [00:14<00:19, 10.9MB/s]

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!

给作者打赏,选择打赏金额
¥1¥5¥10¥20¥50¥100¥200 自定义

​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Redis适合做队列吗?详解三种Redis队列的使用方式

作者:Magic Kaito

来源:水滴与银弹

我经常听到很多人讨论,关于「把 Redis 当作队列来用是否合适」的问题。

有些人表示赞成,他们认为 Redis 很轻量,用作队列很方便。

也些人则反对,认为 Redis 会「丢」数据,最好还是用「专业」的队列中间件更稳妥。

究竟哪种方案更好呢?

这篇文章,我就和你聊一聊把 Redis 当作队列,究竟是否合适这个问题。

我会从简单到复杂,一步步带你梳理其中的细节,把这个问题真正的讲清楚。

看完这篇文章后,我希望你对这个问题你会有全新的认识。

在文章的最后,我还会告诉你关于「技术选型」的思路,文章有点长,希望你可以耐心读完。

从最简单的开始:List 队列

首先,我们先从最简单的场景开始讲起。

如果你的业务需求足够简单,想把 Redis 当作队列来使用,肯定最先想到的就是使用 List 这个数据类型。

因为 List 底层的实现就是一个「链表」,在头部和尾部操作元素,时间复杂度都是 O(1),这意味着它非常符合消息队列的模型。

如果把 List 当作队列,你可以这么来用。

生产者使用 LPUSH 发布消息:

127.0.0.1:6379> LPUSH queue msg1
(integer) 1
127.0.0.1:6379> LPUSH queue msg2
(integer) 2

消费者这一侧,使用 RPOP 拉取消息:

127.0.0.1:6379> RPOP queue
"msg1"
127.0.0.1:6379> RPOP queue
"msg2"

这个模型非常简单,也很容易理解。

但这里有个小问题,当队列中已经没有消息了,消费者在执行 RPOP 时,会返回 NULL。

127.0.0.1:6379> RPOP queue
(nil)   // 没消息了

而我们在编写消费者逻辑时,一般是一个「死循环」,这个逻辑需要不断地从队列中拉取消息进行处理,伪代码一般会这么写:

while true:
    msg = redis.rpop("queue")
    // 没有消息,继续循环
    if msg == null:
        continue
    // 处理消息
    handle(msg)

如果此时队列为空,那消费者依旧会频繁拉取消息,这会造成「CPU 空转」,不仅浪费 CPU 资源,还会对 Redis 造成压力。

怎么解决这个问题呢?

也很简单,当队列为空时,我们可以「休眠」一会,再去尝试拉取消息。代码可以修改成这样:

while true:
    msg = redis.rpop("queue")
    // 没有消息,休眠2s
    if msg == null:
        sleep(2)
        continue
    // 处理消息        
    handle(msg)

这就解决了 CPU 空转问题。

这个问题虽然解决了,但又带来另外一个问题:当消费者在休眠等待时,有新消息来了,那消费者处理新消息就会存在「延迟」。

假设设置的休眠时间是 2s,那新消息最多存在 2s 的延迟。

要想缩短这个延迟,只能减小休眠的时间。但休眠时间越小,又有可能引发 CPU 空转问题。

鱼和熊掌不可兼得。

那如何做,既能及时处理新消息,还能避免 CPU 空转呢?

Redis 是否存在这样一种机制:如果队列为空,消费者在拉取消息时就「阻塞等待」,一旦有新消息过来,就通知我的消费者立即处理新消息呢?

幸运的是,Redis 确实提供了「阻塞式」拉取消息的命令:BRPOP / BLPOP,这里的 B 指的是阻塞(Block)。

现在,你可以这样来拉取消息了:

while true:
    // 没消息阻塞等待,0表示不设置超时时间
    msg = redis.brpop("queue"0)
    if msg == null:
        continue
    // 处理消息
    handle(msg)

使用 BRPOP 这种阻塞式方式拉取消息时,还支持传入一个「超时时间」,如果设置为 0,则表示不设置超时,直到有新消息才返回,否则会在指定的超时时间后返回 NULL。

这个方案不错,既兼顾了效率,还避免了 CPU 空转问题,一举两得。

注意:如果设置的超时时间太长,这个连接太久没有活跃过,可能会被 Redis Server 判定为无效连接,之后 Redis Server 会强制把这个客户端踢下线。所以,采用这种方案,客户端要有重连机制。

解决了消息处理不及时的问题,你可以再思考一下,这种队列模型,有什么缺点?

我们一起来分析一下:

  1. 不支持重复消费:消费者拉取消息后,这条消息就从 List 中删除了,无法被其它消费者再次消费,即不支持多个消费者消费同一批数据
  2. 消息丢失:消费者拉取到消息后,如果发生异常宕机,那这条消息就丢失了

第一个问题是功能上的,使用 List 做消息队列,它仅仅支持最简单的,一组生产者对应一组消费者,不能满足多组生产者和消费者的业务场景。

第二个问题就比较棘手了,因为从 List 中 POP 一条消息出来后,这条消息就会立即从链表中删除了。也就是说,无论消费者是否处理成功,这条消息都没办法再次消费了。

这也意味着,如果消费者在处理消息时异常宕机,那这条消息就相当于丢失了。

针对这 2 个问题怎么解决呢?我们一个个来看。

发布/订阅模型:Pub/Sub

从名字就能看出来,这个模块是 Redis 专门是针对「发布/订阅」这种队列模型设计的。

它正好可以解决前面提到的第一个问题:重复消费。

即多组生产者、消费者的场景,我们来看它是如何做的。

Redis 提供了 PUBLISH / SUBSCRIBE 命令,来完成发布、订阅的操作。

假设你想开启 2 个消费者,同时消费同一批数据,就可以按照以下方式来实现。

首先,使用 SUBSCRIBE 命令,启动 2 个消费者,并「订阅」同一个队列。

// 2个消费者 都订阅一个队列
127.0.0.1:6379> SUBSCRIBE queue
Reading messages... (press Ctrl-C to quit)
1) "subscribe"
2) "queue"
3) (integer) 1

此时,2 个消费者都会被阻塞住,等待新消息的到来。

之后,再启动一个生产者,发布一条消息。

127.0.0.1:6379> PUBLISH queue msg1
(integer) 1

这时,2 个消费者就会解除阻塞,收到生产者发来的新消息。

127.0.0.1:6379> SUBSCRIBE queue
// 收到新消息
1) "message"
2) "queue"
3) "msg1"

看到了么,使用 Pub/Sub 这种方案,既支持阻塞式拉取消息,还很好地满足了多组消费者,消费同一批数据的业务需求。

除此之外,Pub/Sub 还提供了「匹配订阅」模式,允许消费者根据一定规则,订阅「多个」自己感兴趣的队列。

// 订阅符合规则的队列
127.0.0.1:6379> PSUBSCRIBE queue.*
Reading messages... (press Ctrl-C to quit)
1) "psubscribe"
2) "queue.*"
3) (integer) 1

这里的消费者,订阅了 queue.* 相关的队列消息。

之后,生产者分别向 queue.p1 和 queue.p2 发布消息。

127.0.0.1:6379> PUBLISH queue.p1 msg1
(integer) 1
127.0.0.1:6379> PUBLISH queue.p2 msg2
(integer) 1

这时再看消费者,它就可以接收到这 2 个生产者的消息了。

127.0.0.1:6379> PSUBSCRIBE queue.*
Reading messages... (press Ctrl-C to quit)
...
// 来自queue.p1的消息
1) "pmessage"
2) "queue.*"
3) "queue.p1"
4) "msg1"

// 来自queue.p2的消息
1) "pmessage"
2) "queue.*"
3) "queue.p2"
4) "msg2"

我们可以看到,Pub/Sub 最大的优势就是,支持多组生产者、消费者处理消息。

讲完了它的优点,那它有什么缺点呢?

其实,Pub/Sub 最大问题是:丢数据

如果发生以下场景,就有可能导致数据丢失:

  1. 消费者下线
  2. Redis 宕机
  3. 消息堆积

究竟是怎么回事?

这其实与 Pub/Sub 的实现方式有很大关系。

Pub/Sub 在实现时非常简单,它没有基于任何数据类型,也没有做任何的数据存储,它只是单纯地为生产者、消费者建立「数据转发通道」,把符合规则的数据,从一端转发到另一端。

一个完整的发布、订阅消息处理流程是这样的:

  1. 消费者订阅指定队列,Redis 就会记录一个映射关系:队列->消费者
  2. 生产者向这个队列发布消息,那 Redis 就从映射关系中找出对应的消费者,把消息转发给它

看到了么,整个过程中,没有任何的数据存储,一切都是实时转发的。

这种设计方案,就导致了上面提到的那些问题。

例如,如果一个消费者异常挂掉了,它再重新上线后,只能接收新的消息,在下线期间生产者发布的消息,因为找不到消费者,都会被丢弃掉。

如果所有消费者都下线了,那生产者发布的消息,因为找不到任何一个消费者,也会全部「丢弃」。

所以,当你在使用 Pub/Sub 时,一定要注意:消费者必须先订阅队列,生产者才能发布消息,否则消息会丢失。

这也是前面讲例子时,我们让消费者先订阅队列,之后才让生产者发布消息的原因。

另外,因为 Pub/Sub 没有基于任何数据类型实现,所以它也不具备「数据持久化」的能力。

也就是说,Pub/Sub 的相关操作,不会写入到 RDB 和 AOF 中,当 Redis 宕机重启,Pub/Sub 的数据也会全部丢失。

最后,我们来看 Pub/Sub 在处理「消息积压」时,为什么也会丢数据?

当消费者的速度,跟不上生产者时,就会导致数据积压的情况发生。

如果采用 List 当作队列,消息积压时,会导致这个链表很长,最直接的影响就是,Redis 内存会持续增长,直到消费者把所有数据都从链表中取出。

但 Pub/Sub 的处理方式却不一样,当消息积压时,有可能会导致消费失败和消息丢失

这是怎么回事?

还是回到 Pub/Sub 的实现细节上来说。

每个消费者订阅一个队列时,Redis 都会在 Server 上给这个消费者在分配一个「缓冲区」,这个缓冲区其实就是一块内存。

当生产者发布消息时,Redis 先把消息写到对应消费者的缓冲区中。

之后,消费者不断地从缓冲区读取消息,处理消息。

但是,问题就出在这个缓冲区上。

因为这个缓冲区其实是有「上限」的(可配置),如果消费者拉取消息很慢,就会造成生产者发布到缓冲区的消息开始积压,缓冲区内存持续增长。

如果超过了缓冲区配置的上限,此时,Redis 就会「强制」把这个消费者踢下线。

这时消费者就会消费失败,也会丢失数据。

如果你有看过 Redis 的配置文件,可以看到这个缓冲区的默认配置:client-output-buffer-limit pubsub 32mb 8mb 60。

它的参数含义如下:

  • 32mb:缓冲区一旦超过 32MB,Redis 直接强制把消费者踢下线
  • 8mb + 60:缓冲区超过 8MB,并且持续 60 秒,Redis 也会把消费者踢下线

Pub/Sub 的这一点特点,是与 List 作队列差异比较大的。

从这里你应该可以看出,List 其实是属于「拉」模型,而 Pub/Sub 其实属于「推」模型

List 中的数据可以一直积压在内存中,消费者什么时候来「拉」都可以。

但 Pub/Sub 是把消息先「推」到消费者在 Redis Server 上的缓冲区中,然后等消费者再来取。

当生产、消费速度不匹配时,就会导致缓冲区的内存开始膨胀,Redis 为了控制缓冲区的上限,所以就有了上面讲到的,强制把消费者踢下线的机制。

好了,现在我们总结一下 Pub/Sub 的优缺点:

  1. 支持发布 / 订阅,支持多组生产者、消费者处理消息
  2. 消费者下线,数据会丢失
  3. 不支持数据持久化,Redis 宕机,数据也会丢失
  4. 消息堆积,缓冲区溢出,消费者会被强制踢下线,数据也会丢失

有没有发现,除了第一个是优点之外,剩下的都是缺点。

所以,很多人看到 Pub/Sub 的特点后,觉得这个功能很「鸡肋」。

也正是以上原因,Pub/Sub 在实际的应用场景中用得并不多。

目前只有哨兵集群和 Redis 实例通信时,采用了 Pub/Sub 的方案,因为哨兵正好符合即时通讯的业务场景。

我们再来看一下,Pub/Sub 有没有解决,消息处理时异常宕机,无法再次消费的问题呢?

其实也不行,Pub/Sub 从缓冲区取走数据之后,数据就从 Redis 缓冲区删除了,消费者发生异常,自然也无法再次重新消费。

好,现在我们重新梳理一下,我们在使用消息队列时的需求。

当我们在使用一个消息队列时,希望它的功能如下:

  • 支持阻塞等待拉取消息
  • 支持发布 / 订阅模式
  • 消费失败,可重新消费,消息不丢失
  • 实例宕机,消息不丢失,数据可持久化
  • 消息可堆积

Redis 除了 List 和 Pub/Sub 之外,还有符合这些要求的数据类型吗?

其实,Redis 的作者也看到了以上这些问题,也一直在朝着这些方向努力着。

Redis 作者在开发 Redis 期间,还另外开发了一个开源项目 disque。

这个项目的定位,就是一个基于内存的分布式消息队列中间件。

但由于种种原因,这个项目一直不温不火。

终于,在 Redis 5.0 版本,作者把 disque 功能移植到了 Redis 中,并给它定义了一个新的数据类型:Stream

下面我们就来看看,它能符合上面提到的这些要求吗?

趋于成熟的队列:Stream

我们来看 Stream 是如何解决上面这些问题的。

我们依旧从简单到复杂,依次来看 Stream 在做消息队列时,是如何处理的?

首先,Stream 通过 XADD 和 XREAD 完成最简单的生产、消费模型:

  • XADD:发布消息
  • XREAD:读取消息

生产者发布 2 条消息:

// *表示让Redis自动生成消息ID
127.0.0.1:6379> XADD queue * name zhangsan
"1618469123380-0"
127.0.0.1:6379> XADD queue * name lisi
"1618469127777-0"

使用 XADD 命令发布消息,其中的「*」表示让 Redis 自动生成唯一的消息 ID。

这个消息 ID 的格式是「时间戳-自增序号」。

消费者拉取消息:

// 从开头读取5条消息,0-0表示从开头读取
127.0.0.1:6379> XREAD COUNT 5 STREAMS queue 0-0
1) 1) "queue"
   2) 1) 1) "1618469123380-0"
         2) 1) "name"
            2) "zhangsan"
      2) 1) "1618469127777-0"
         2) 1) "name"
            2) "lisi"

如果想继续拉取消息,需要传入上一条消息的 ID:

127.0.0.1:6379> XREAD COUNT 5 STREAMS queue 1618469127777-0
(nil)

没有消息,Redis 会返回 NULL。

以上就是 Stream 最简单的生产、消费。

这里不再重点介绍 Stream 命令的各种参数,我在例子中演示时,凡是大写的单词都是「固定」参数,凡是小写的单词,都是可以自己定义的,例如队列名、消息长度等等,下面的例子规则也是一样,为了方便你理解,这里有必要提醒一下。

下面我们来看,针对前面提到的消息队列要求,Stream 都是如何解决的?

1) Stream 是否支持「阻塞式」拉取消息?

可以的,在读取消息时,只需要增加 BLOCK 参数即可。

// BLOCK 0 表示阻塞等待,不设置超时时间
127.0.0.1:6379> XREAD COUNT 5 BLOCK 0 STREAMS queue 1618469127777-0

这时,消费者就会阻塞等待,直到生产者发布新的消息才会返回。

2) Stream 是否支持发布 / 订阅模式?

也没问题,Stream 通过以下命令完成发布订阅:

  • XGROUP:创建消费者组
  • XREADGROUP:在指定消费组下,开启消费者拉取消息

下面我们来看具体如何做?

首先,生产者依旧发布 2 条消息:

127.0.0.1:6379> XADD queue * name zhangsan
"1618470740565-0"
127.0.0.1:6379> XADD queue * name lisi
"1618470743793-0"

之后,我们想要开启 2 组消费者处理同一批数据,就需要创建 2 个消费者组:

// 创建消费者组1,0-0表示从头拉取消息
127.0.0.1:6379> XGROUP CREATE queue group1 0-0
OK
// 创建消费者组2,0-0表示从头拉取消息
127.0.0.1:6379> XGROUP CREATE queue group2 0-0
OK

消费者组创建好之后,我们可以给每个「消费者组」下面挂一个「消费者」,让它们分别处理同一批数据。

第一个消费组开始消费:

// group1的consumer开始消费,>表示拉取最新数据
127.0.0.1:6379> XREADGROUP GROUP group1 consumer COUNT 5 STREAMS queue >
1) 1) "queue"
   2) 1) 1) "1618470740565-0"
         2) 1) "name"
            2) "zhangsan"
      2) 1) "1618470743793-0"
         2) 1) "name"
            2) "lisi"

同样地,第二个消费组开始消费:

// group2的consumer开始消费,>表示拉取最新数据
127.0.0.1:6379> XREADGROUP GROUP group2 consumer COUNT 5 STREAMS queue >
1) 1) "queue"
   2) 1) 1) "1618470740565-0"
         2) 1) "name"
            2) "zhangsan"
      2) 1) "1618470743793-0"
         2) 1) "name"
            2) "lisi"

我们可以看到,这 2 组消费者,都可以获取同一批数据进行处理了。

这样一来,就达到了多组消费者「订阅」消费的目的。

3) 消息处理时异常,Stream 能否保证消息不丢失,重新消费?

除了上面拉取消息时用到了消息 ID,这里为了保证重新消费,也要用到这个消息 ID。

当一组消费者处理完消息后,需要执行 XACK 命令告知 Redis,这时 Redis 就会把这条消息标记为「处理完成」。

// group1下的 1618472043089-0 消息已处理完成
127.0.0.1:6379> XACK queue group1 1618472043089-0

如果消费者异常宕机,肯定不会发送 XACK,那么 Redis 就会依旧保留这条消息。

待这组消费者重新上线后,Redis 就会把之前没有处理成功的数据,重新发给这个消费者。这样一来,即使消费者异常,也不会丢失数据了。

// 消费者重新上线,0-0表示重新拉取未ACK的消息
127.0.0.1:6379> XREADGROUP GROUP group1 consumer1 COUNT 5 STREAMS queue 0-0
// 之前没消费成功的数据,依旧可以重新消费
1) 1) "queue"
   2) 1) 1) "1618472043089-0"
         2) 1) "name"
            2) "zhangsan"
      2) 1) "1618472045158-0"
         2) 1) "name"
            2) "lisi"

4) Stream 数据会写入到 RDB 和 AOF 做持久化吗?

Stream 是新增加的数据类型,它与其它数据类型一样,每个写操作,也都会写入到 RDB 和 AOF 中。

我们只需要配置好持久化策略,这样的话,就算 Redis 宕机重启,Stream 中的数据也可以从 RDB 或 AOF 中恢复回来。

5) 消息堆积时,Stream 是怎么处理的?

其实,当消息队列发生消息堆积时,一般只有 2 个解决方案:

  1. 生产者限流:避免消费者处理不及时,导致持续积压
  2. 丢弃消息:中间件丢弃旧消息,只保留固定长度的新消息

而 Redis 在实现 Stream 时,采用了第 2 个方案。

在发布消息时,你可以指定队列的最大长度,防止队列积压导致内存爆炸。

// 队列长度最大10000
127.0.0.1:6379> XADD queue MAXLEN 10000 * name zhangsan
"1618473015018-0"

当队列长度超过上限后,旧消息会被删除,只保留固定长度的新消息。

这么来看,Stream 在消息积压时,如果指定了最大长度,还是有可能丢失消息的。

除了以上介绍到的命令,Stream 还支持查看消息长度(XLEN)、查看消费者状态(XINFO)等命令,使用也比较简单,你可以查询官方文档了解一下,这里就不过多介绍了。

好了,通过以上介绍,我们可以看到,Redis 的 Stream 几乎覆盖到了消息队列的各种场景,是不是觉得很完美?

既然它的功能这么强大,这是不是意味着,Redis 真的可以作为专业的消息队列中间件来使用呢?

但是还「差一点」,就算 Redis 能做到以上这些,也只是「趋近于」专业的消息队列。

原因在于 Redis 本身的一些问题,如果把其定位成消息队列,还是有些欠缺的。

到这里,就不得不把 Redis 与专业的队列中间件做对比了。

下面我们就来看一下,Redis 在作队列时,到底还有哪些欠缺?

与专业的消息队列对比

其实,一个专业的消息队列,必须要做到两大块:

  1. 消息不丢
  2. 消息可堆积

前面我们讨论的重点,很大篇幅围绕的是第一点展开的。

这里我们换个角度,从一个消息队列的「使用模型」来分析一下,怎么做,才能保证数据不丢?

使用一个消息队列,其实就分为三大块:生产者、队列中间件、消费者

消息是否会发生丢失,其重点也就在于以下 3 个环节:

  1. 生产者会不会丢消息?
  2. 消费者会不会丢消息?
  3. 队列中间件会不会丢消息?

1) 生产者会不会丢消息?

当生产者在发布消息时,可能发生以下异常情况:

  1. 消息没发出去:网络故障或其它问题导致发布失败,中间件直接返回失败
  2. 不确定是否发布成功:网络问题导致发布超时,可能数据已发送成功,但读取响应结果超时了

如果是情况 1,消息根本没发出去,那么重新发一次就好了。

如果是情况 2,生产者没办法知道消息到底有没有发成功?所以,为了避免消息丢失,它也只能继续重试,直到发布成功为止。

生产者一般会设定一个最大重试次数,超过上限依旧失败,需要记录日志报警处理。

也就是说,生产者为了避免消息丢失,只能采用失败重试的方式来处理。

但发现没有?这也意味着消息可能会重复发送。

是的,在使用消息队列时,要保证消息不丢,宁可重发,也不能丢弃。

那消费者这边,就需要多做一些逻辑了。

对于敏感业务,当消费者收到重复数据数据时,要设计幂等逻辑,保证业务的正确性。

从这个角度来看,生产者会不会丢消息,取决于生产者对于异常情况的处理是否合理。

所以,无论是 Redis 还是专业的队列中间件,生产者在这一点上都是可以保证消息不丢的。

2) 消费者会不会丢消息?

这种情况就是我们前面提到的,消费者拿到消息后,还没处理完成,就异常宕机了,那消费者还能否重新消费失败的消息?

要解决这个问题,消费者在处理完消息后,必须「告知」队列中间件,队列中间件才会把标记已处理,否则仍旧把这些数据发给消费者。

这种方案需要消费者和中间件互相配合,才能保证消费者这一侧的消息不丢。

无论是 Redis 的 Stream,还是专业的队列中间件,例如 RabbitMQ、Kafka,其实都是这么做的。

所以,从这个角度来看,Redis 也是合格的。

3) 队列中间件会不会丢消息?

前面 2 个问题都比较好处理,只要客户端和服务端配合好,就能保证生产端、消费端都不丢消息。

但是,如果队列中间件本身就不可靠呢?

毕竟生产者和消费这都依赖它,如果它不可靠,那么生产者和消费者无论怎么做,都无法保证数据不丢。

在这个方面,Redis 其实没有达到要求。

Redis 在以下 2 个场景下,都会导致数据丢失。

  1. AOF 持久化配置为每秒写盘,但这个写盘过程是异步的,Redis 宕机时会存在数据丢失的可能
  2. 主从复制也是异步的,主从切换时,也存在丢失数据的可能(从库还未同步完成主库发来的数据,就被提成主库)

基于以上原因我们可以看到,Redis 本身的无法保证严格的数据完整性

所以,如果把 Redis 当做消息队列,在这方面是有可能导致数据丢失的。

再来看那些专业的消息队列中间件是如何解决这个问题的?

像 RabbitMQ 或 Kafka 这类专业的队列中间件,在使用时,一般是部署一个集群,生产者在发布消息时,队列中间件通常会写「多个节点」,以此保证消息的完整性。这样一来,即便其中一个节点挂了,也能保证集群的数据不丢失。

也正因为如此,RabbitMQ、Kafka在设计时也更复杂。毕竟,它们是专门针对队列场景设计的。

但 Redis 的定位则不同,它的定位更多是当作缓存来用,它们两者在这个方面肯定是存在差异的。

最后,我们来看消息积压怎么办?

4) 消息积压怎么办?

因为 Redis 的数据都存储在内存中,这就意味着一旦发生消息积压,则会导致 Redis 的内存持续增长,如果超过机器内存上限,就会面临被 OOM 的风险。

所以,Redis 的 Stream 提供了可以指定队列最大长度的功能,就是为了避免这种情况发生。

但 Kafka、RabbitMQ 这类消息队列就不一样了,它们的数据都会存储在磁盘上,磁盘的成本要比内存小得多,当消息积压时,无非就是多占用一些磁盘空间,相比于内存,在面对积压时也会更加「坦然」。

综上,我们可以看到,把 Redis 当作队列来使用时,始终面临的 2 个问题:

  1. Redis 本身可能会丢数据
  2. 面对消息积压,Redis 内存资源紧张

到这里,Redis 是否可以用作队列,我想这个答案你应该会比较清晰了。

如果你的业务场景足够简单,对于数据丢失不敏感,而且消息积压概率比较小的情况下,把 Redis 当作队列是完全可以的。

而且,Redis 相比于 Kafka、RabbitMQ,部署和运维也更加轻量。

如果你的业务场景对于数据丢失非常敏感,而且写入量非常大,消息积压时会占用很多的机器资源,那么我建议你使用专业的消息队列中间件。

总结

好了,总结一下。这篇文章我们从「Redis 能否用作队列」这个角度出发,介绍了 List、Pub/Sub、Stream 在做队列的使用方式,以及它们各自的优劣。

之后又把 Redis 和专业的消息队列中间件做对比,发现 Redis 的不足之处。

最后,我们得出 Redis 做队列的合适场景。

这里我也列了一个表格,总结了它们各自的优缺点。

后记

最后,我想和你再聊一聊关于「技术方案选型」的问题。

你应该也看到了,这篇文章虽然始于 Redis,但并不止于 Redis。

我们在分析 Redis 细节时,一直在提出问题,然后寻找更好的解决方案,在文章最后,又聊到一个专业的消息队列应该怎么做。

其实,我们在讨论技术选型时,就是一个关于如何取舍的问题。

而这里我想传达给你的信息是,在面对技术选型时,不要不经过思考就觉得哪个方案好,哪个方案不好

你需要根据具体场景具体分析,这里我把这个分析过程分为 2 个层面:

  1. 业务功能角度
  2. 技术资源角度

这篇文章所讲到的内容,都是以业务功能角度出发做决策的。

但这里的第二点,从技术资源角度出发,其实也很重要。

技术资源的角度是说,你所处的公司环境、技术资源能否匹配这些技术方案

这个怎么解释呢?

简单来讲,就是你所在的公司、团队,是否有匹配的资源能 hold 住这些技术方案。

我们都知道 Kafka、RabbitMQ 是非常专业的消息中间件,但它们的部署和运维,相比于 Redis 来说,也会更复杂一些。

如果你在一个大公司,公司本身就有优秀的运维团队,那么使用这些中间件肯定没问题,因为有足够优秀的人能 hold 住这些中间件,公司也会投入人力和时间在这个方向上。

但如果你是在一个初创公司,业务正处在快速发展期,暂时没有能 hold 住这些中间件的团队和人,如果贸然使用这些组件,当发生故障时,排查问题也会变得很困难,甚至会阻碍业务的发展。

而这种情形下,如果公司的技术人员对于 Redis 都很熟,综合评估来看,Redis 也基本可以满足业务 90% 的需求,那当下选择 Redis 未必不是一个好的决策。

所以,做技术选型不只是技术问题,还与人、团队、管理、组织结构有关

也正是因为这些原因,当你在和别人讨论技术选型问题时,你会发现每个公司的做法都不相同。

毕竟每个公司所处的环境和文化不一样,做出的决策当然就会各有差异。

如果你不了解这其中的逻辑,那在做技术选型时,只会趋于表面现象,无法深入到问题根源。

而一旦你理解了这个逻辑,那么你在看待这个问题时,不仅对于技术会有更加深刻认识,对技术资源和人的把握,也会更加清晰。

希望你以后在做技术选型时,能够把这些因素也考虑在内,这对你的技术成长之路也是非常有帮助的。

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!

给作者打赏,选择打赏金额
¥1¥5¥10¥20¥50¥100¥200 自定义

​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

阿里Python 自动化工具 tidevice 使用指南

1. 前言

最近,阿里内部开源了一个 iOS 端由 Python 编写的自动化工具,即:tidevice

它是一款跨平台的自动化开源工具,不依赖 Xcode 就可以启动 WebDriverAgent( WDA ),这也就意味着 Windows 可以直接运行 iOS 自动化脚本

项目地址:

https://github.com/alibaba/taobao-iphone-device

2. 准备

进入到虚拟环境,先安装 tidevice 的依赖包

# 安装依赖包
pip3 install -U "tidevice[openssl]" 

# 查看tidevice版本,检查是否安装成功
tidevice version

3. 常见功能

将 iPhone 设备连接到电脑上,就可以使用 tidevice 提供的功能了

3-1  查看设备列表

# 二选一
tidevice list

# json数据显示
tidevice list --json

3-2  安装、卸载应用

安装对应的关键字为:「 install

tidevice 同时支持安装本地 ipa 包和远链下的 ipa 应用包

另外,tidevice 可以使用「 –udid 」参数将应用安装到某一台设备中

# 安装本地应用
tidevice install example.ipa

# 根据udid参数,指定设备安装应用
tidevice --udid $UDID install https://example.org/example.ipa
tidevice install https://.....ipa

卸载对应的关键字为:「 uninstall

通过应用包名可以卸载设备上的某一个应用

# 卸载应用(通过包名)
# 比如:知识星球App包名为:com.unnoo.quan
tidevice uninstall com.unnoo.quan

3-3  启动、关闭应用

启动应用对应的关键字为:「 launch

关闭应用对应的关键字为:「 kill

# 打开应用
tidevice launch com.unnoo.quan

# 停止杀死应用
tidevice kill com.unnoo.quan

3-4  已安装应用及名称、版本

使用「 tidevice applist 」命令,可以查看设备上已经安装的应用、应用名称、应用版本号

# 查看设备应用信息列表
localhost:tidevice_demo xingag
 
nbsp;tidevice applist
com.tencent.xin WeChat 8.0.2
com.ss.iphone.ugc.Aweme 抖音 13.4.0
com.tencent.mttlite QQ浏览器 10.8.3
com.panasonic.jp.imageapp Image App 1.10.17
com.unnoo.quan 知识星球 4.20.2
co.visualsupply.cam VSCO 189
com.ucweb.iphone.lowversion UC浏览器 13.1.5
com.niksoftware.snapseedforipad Snapseed 2.19.5
com.autonavi.amap 高德地图 10.76.0
com.lagou.education 拉勾教育 1.4.9
com.xunmeng.pinduoduo 拼多多 5.37.0
com.tencent.QQMusic QQ音樂 10.5.5
io.ideamp.feelcab Feelca B 1.6.0
com.chinaunicom.mobilebusiness 手机营业厅 8.00.01
com.feiyu-tech.vico Vicool 1.2.26
com.ss.iphone.article.News 今日头条 7.9.3
com.sogou.sogouinput 搜狗输入法 10.18.1
org.geekbang.GeekTime 极客时间 2.9.2
com.burbn.hyperlapse Hyperlapse 1.3.4
com.apple.itunesu iTunes U 3.8

3-5  设备信息

利用「 tidevice info 」可以查看设备信息,比如:设备序列号、系统版本、CPU、本机号码、时间戳、蓝牙地址、MAC 地址等信息

# 查看设备信息
localhost:~ xingag
 
nbsp;tidevice info
MarketName:       iPhone SE (1st generation)
DeviceName:       xingag
ProductVersion:   14.4
ProductType:      iPhone8,4
ModelNumber:      MP892
SerialNumber:     ...
CPUArchitecture:  arm64
ProductName:      iPhone OS
ProtocolVersion:  2
RegionInfo:       ZP/A
TimeIntervalSince1970: 1616979424.235399
TimeZone:         Asia/Shanghai
WiFiAddress:      58:e2:8f:68:4c:b0
BluetoothAddress: 58:e2:8f:68:4c:b1
BasebandVersion:  10.40.01
...

如果要查看设备的电池信息,可以使用关键字 「 –domain + 应用包名 」来获取

# 查看设备电池信息
localhost:~ xingag
 
nbsp;tidevice info --domain com.apple.mobile.battery --json
{
    "BatteryCurrentCapacity"54,
    "BatteryIsCharging"true,
    "ExternalChargeCapable"true,
    "ExternalConnected"true,
    "FullyCharged"false,
    "GasGaugeCapability"true,
    "HasBattery"true
}

3-6  重启及截图

重启对应的关键字为:「 reboot

截图对应的关键字为:「 screenshot

# 重启设备
tidevice reboot

# 截图并保存到文件 screenshot.jpg 中
tidevice screenshot screenshot.jpg

3-7  系统日志及更多帮助

查看系统日志的命令为:「 tidevice syslog 」,当然也可以配置 grep 参数进行过滤 

# 查看系统日志
tidevice syslog

# 更多帮助
tidevice -h

4. 自动化步骤

要完成 iOS 端的自动化,我们还需要做一些准备工作

4-1 安装 WDA

我们需要将 WebDriverAgent 安装到 iOS 设备上,通过它驱动手机进行一系列自动化操作

PS:由于 Facebook WDA 很长时间没有更新了,这里建议直接使用 Appium WDA

https://github.com/appium/WebDriverAgent

下载项目后,使用 Xcode 打开,Scheme 选择 WebDriverAgentRunner,设备选择真机

然后配置开发者证书,可以参考下面链接进行配置

https://testerhome.com/topics/7220

最后,Xcode 选择 Project 下的 Test 将项目运行到真机设备上

注意:第一次运行 WDA 可能运行失败,需要手动在设置中对证书添加信任

4-2  运行 WDA

真机设备安装完 WDA 后,就可以脱离 Mac,使用 Windows 进行自动化操作了

使用「 tidevice wdaproxy 」命令可以运行 WDA 和端口转发

 # 运行 WDA
# 端口转发到8100
# 应用包名:com.facebook.WebDriverAgentRunner.xingag23.xctrunner
idevice wdaproxy -B com.facebook.WebDriverAgentRunner.xingag23.xctrunner --port 8100

PS:由于 Xcode 设置证书的时候,更改过 bundle_id,所以这里的包名是一个变量

4-3  编写自动化脚本

接下来,就可以使用 Appium 或 facebook-wda 编写脚本并运行到 iOS 设备上了

以 facebook-wda 为例

首先,我们安装对应的依赖

# 安装facebook-wda依赖
pip3 install -U facebook-wda

接着,编写自动化脚本并运行测试

import wda
import time

# 连接设备
c1 = wda.USBClient()

# c1 = wda.Client("http://10.3.209.175:8100")
print(c.info)

# 极客时间
bundle_id = 'org.geekbang.GeekTime'

# 通过app的bundleId启动App
s = c1.session(bundle_id)

# 休眠5s
s.sleep(5)

# 截图保存到本地
c1.screenshot('sc.png')

# 回到桌面
s.home()

5. 最后

阿里这款 iOS 端自动化工具的主要优点是启动速度快,内存占用低;更重要的是,它是跨平台,稳定性相对较高

如果你觉得文章还不错,请大家 点赞、分享、留言 下,因为这将是我持续输出更多优质文章的最强动力!

本文转自Airpython.

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!

给作者打赏,选择打赏金额
¥1¥5¥10¥20¥50¥100¥200 自定义

​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

5 分钟,带你快速入门 Django 文件上传下载

1. 前言

文件上传、下载作为基础功能,在 Web 项目中非常普遍,Django 项目如何实现文件上传下载?

本篇文章将带大家 5 分钟快速实现文件上传下载功能

2. 实战一下

详细实现步骤如下( 9 步)

2-1  进入虚拟环境,创建一个项目及 App

workon django3

# 创建项目
django-admin startproject file_up_and_down_demo

# 进入项目根目录
cd file_up_and_down_demo/

# 创建一个App
django-admin startapp index

2-2  创建模板目录并配置 settings.py

在 index App 下创建一个 templates 文件夹,然后在项目配置文件 settings.py 中配置 App 及模板目录

# settings.py

# 配置App
INSTALLED_APPS = [
    'django.contrib.admin',
    'django.contrib.auth',
    'django.contrib.contenttypes',
    'django.contrib.sessions',
    'django.contrib.messages',
    'django.contrib.staticfiles',
    'index',
]

TEMPLATES = [
    {
        'BACKEND''django.template.backends.django.DjangoTemplates',
        'DIRS': [
            # 配置模板目录
            os.path.join(BASE_DIR, 'index/templates')
        ],
        'APP_DIRS': True,
        'OPTIONS': {
            'context_processors': [
                'django.template.context_processors.debug',
                'django.template.context_processors.request',
                'django.contrib.auth.context_processors.auth',
                'django.contrib.messages.context_processors.messages',
            ],
        },
    },
]

2-3  创建文件模型,并映射到数据库

以默认的 sqlite 为例,在 index App 下的 models.py 中自定义一个代表文件的模型

该模型包含 3 个字段:

  • 文件名称

  • 文件保存路径

  • 上传时间

# index App models.py

from django.db import models
from django.utils import timezone


# 文件模型
class FileModel(models.Model):
    # 文件名称
    name = models.CharField(max_length=50)

    # 文件保存路径
    path = models.CharField(max_length=100)

    # 上传时间
    upload_time = models.DateTimeField(default=timezone.now)

然后,在项目根目录下执行下面 2 条命令,将模型结构映射到数据库中

# 数据库映射
Python3 manage.py makemigrations

python3 manage.py migrate

2-4  自定义表单控件

在 index App 下创建一个表单文件 forms.py

在内部自定义一个表单类,继承于 forms.Form

# index App forms.py

from django import forms

class FileForm(forms.Form):
    file = forms.FileField(
        # 支持多文件上传
        widget=forms.ClearableFileInput(attrs={'multiple'True}),
        label='请选择文件',
    )

2-5  添加上传、下载路由 URL

为上传、下载功能添加路由 URL

# 项目urls.py
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
    path('admin/', admin.site.urls),
    path('', include('index.urls'))
]

# index App urls.py
from django.urls import path

from .views import *

urlpatterns = [
    # 上传
    path('', index_view, name='index'),

    # 下载
    path('download/<id>', download_view, name='download')
]

2-6  编写模板文件

在 index App 的模板文件夹创建一个简单的模板文件 upload.html

其中

  • form 代表视图函数传过来的表单实体对象

  • form.as_p 代表以字段格式渲染所有的表单元素

# index App upload.html
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>主页-上传文件</title>
</head>
<body>

<form method="post" enctype="multipart/form-data">
    {% csrf_token %}
    {{ form.as_p }}
    <input type="submit" value="确定上传">
</form>

</body>
</html>

2-7  上传视图函数

在 index App 下的 views.py 中编写上传功能的视图函数

需要注意的是,我们需要提前在项目根目录创建一个 upload 文件夹,用于存放上传的文件

# index App views.py

def index_view(request):
    """
    上传文件
    :param request:
    :return:
    """

    if request.method == 'POST':
        form = FileForm(request.POST, request.FILES)
        if form.is_valid():
            # 选择的文件
            files = request.FILES.getlist('file')

            # 遍历写入到数据库中
            for file in files:
                # 写入到数据库中
                file_model = FileModel(name=file.name, path=os.path.join('./upload', file.name))
                file_model.save()

                # 写入到服务器本地
                destination = open(os.path.join("./upload", file.name), 'wb+')
                for chunk in file.chunks():
                    destination.write(chunk)
                destination.close()

            # 提示上传成功
            return HttpResponse('上传成功!')
    else:
        form = FileForm()
        return render(request, 'upload.html', locals())

2-8  下载视图函数

接着,编写下载功能的视图函数

# index App views.py

def download_view(request, id):
    """
    下载文件
    :param request:
    :param id:文件id
    :return:
    """

    file_result = FileModel.objects.filter(id=id)

    # 如果文件存在,就下载文件
    if file_result:

        file = list(file_result)[0]

        # 文件名称及路径
        name = file.name
        path = file.path

        # 读取文件
        file = open(path, 'rb')
        response = FileResponse(file)

        # 使用urlquote对文件名称进行编码
        response['Content-Disposition'] = 'attachment;filename="%s"' % urlquote(name)

        return response
    else:
        return HttpResponse('文件不存在!')

2-9  运行并测试

运行项目,访问下面的地址,并上传一个文件

使用 Pycharm 打开 sqlite 数据库,发现成功插入一条文件记录,并且文件也上传到 upload 文件夹下

接着访问下面的地址实现文件下载功能「 其中,file_id 代表文件的 id 值

http://127.0.0.1:8000/download/file_id

3. 最后

文章通过一个简单的例子实现了文件的上传、下载功能,并同步文件记录到数据库

实际项目中,一般还包含文件列表、文件删除等功能,这些功能只需要结合数据库来增删查改即可实现。

本文转自AirPython.

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!

给作者打赏,选择打赏金额
¥1¥5¥10¥20¥50¥100¥200 自定义

​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

有趣好用的Python教程

退出移动版
微信支付
请使用 微信 扫码支付