问题:从熊猫数据框列获取列表

我有一个看起来像这样的Excel文档。

cluster load_date   budget  actual  fixed_price
A   1/1/2014    1000    4000    Y
A   2/1/2014    12000   10000   Y
A   3/1/2014    36000   2000    Y
B   4/1/2014    15000   10000   N
B   4/1/2014    12000   11500   N
B   4/1/2014    90000   11000   N
C   7/1/2014    22000   18000   N
C   8/1/2014    30000   28960   N
C   9/1/2014    53000   51200   N

我希望能够将第1列的内容-集群作为列表返回,因此我可以对其运行一个for循环,并为每个集群创建一个Excel工作表。

还可以将整行的内容返回到列表吗?例如

list = [], list[column1] or list[df.ix(row1)]

I have an excel document which looks like this..

cluster load_date   budget  actual  fixed_price
A   1/1/2014    1000    4000    Y
A   2/1/2014    12000   10000   Y
A   3/1/2014    36000   2000    Y
B   4/1/2014    15000   10000   N
B   4/1/2014    12000   11500   N
B   4/1/2014    90000   11000   N
C   7/1/2014    22000   18000   N
C   8/1/2014    30000   28960   N
C   9/1/2014    53000   51200   N

I want to be able to return the contents of column 1 – cluster as a list, so I can run a for loop over it, and create an excel worksheet for every cluster.

Is it also possible, to return the contents of a whole row to a list? e.g.

list = [], list[column1] or list[df.ix(row1)]

回答 0

拔出它们时,Pandas DataFrame列是Pandas Series,然后可以调用x.tolist()将其转换为Python列表。另外,您也可以使用list(x)

import pandas as pd

data_dict = {'one': pd.Series([1, 2, 3], index=['a', 'b', 'c']),
             'two': pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}

df = pd.DataFrame(data_dict)

print(f"DataFrame:\n{df}\n")
print(f"column types:\n{df.dtypes}")

col_one_list = df['one'].tolist()

col_one_arr = df['one'].to_numpy()

print(f"\ncol_one_list:\n{col_one_list}\ntype:{type(col_one_list)}")
print(f"\ncol_one_arr:\n{col_one_arr}\ntype:{type(col_one_arr)}")

输出:

DataFrame:
   one  two
a  1.0    1
b  2.0    2
c  3.0    3
d  NaN    4

column types:
one    float64
two      int64
dtype: object

col_one_list:
[1.0, 2.0, 3.0, nan]
type:<class 'list'>

col_two_arr:
[ 1.  2.  3. nan]
type:<class 'numpy.ndarray'>

Pandas DataFrame columns are Pandas Series when you pull them out, which you can then call x.tolist() on to turn them into a Python list. Alternatively you cast it with list(x).

import pandas as pd

data_dict = {'one': pd.Series([1, 2, 3], index=['a', 'b', 'c']),
             'two': pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}

df = pd.DataFrame(data_dict)

print(f"DataFrame:\n{df}\n")
print(f"column types:\n{df.dtypes}")

col_one_list = df['one'].tolist()

col_one_arr = df['one'].to_numpy()

print(f"\ncol_one_list:\n{col_one_list}\ntype:{type(col_one_list)}")
print(f"\ncol_one_arr:\n{col_one_arr}\ntype:{type(col_one_arr)}")

Output:

DataFrame:
   one  two
a  1.0    1
b  2.0    2
c  3.0    3
d  NaN    4

column types:
one    float64
two      int64
dtype: object

col_one_list:
[1.0, 2.0, 3.0, nan]
type:<class 'list'>

col_one_arr:
[ 1.  2.  3. nan]
type:<class 'numpy.ndarray'>

回答 1

这将返回一个numpy数组:

arr = df["cluster"].to_numpy()

这将返回一个唯一值的numpy数组:

unique_arr = df["cluster"].unique()

您也可以使用numpy来获取唯一值,尽管两种方法之间存在差异:

arr = df["cluster"].to_numpy()
unique_arr = np.unique(arr)

This returns a numpy array:

arr = df["cluster"].to_numpy()

This returns a numpy array of unique values:

unique_arr = df["cluster"].unique()

You can also use numpy to get the unique values, although there are differences between the two methods:

arr = df["cluster"].to_numpy()
unique_arr = np.unique(arr)

回答 2

转换示例:

numpy数组->熊猫数据框->熊猫列中的列表

numpy数组

data = np.array([[10,20,30], [20,30,60], [30,60,90]])

将numpy数组转换为Panda数据框

dataPd = pd.DataFrame(data = data)

print(dataPd)
0   1   2
0  10  20  30
1  20  30  60
2  30  60  90

转换一个熊猫框到列表

pdToList = list(dataPd['2'])

Example conversion:

Numpy Array -> Panda Data Frame -> List from one Panda Column

Numpy Array

data = np.array([[10,20,30], [20,30,60], [30,60,90]])

Convert numpy array into Panda data frame

dataPd = pd.DataFrame(data = data)
    
print(dataPd)
0   1   2
0  10  20  30
1  20  30  60
2  30  60  90

Convert one Panda column to list

pdToList = list(dataPd['2'])


回答 3

由于这个问题引起了人们的广泛关注,并且有多种方法可以完成您的任务,所以让我提出几个选择。

顺便说一下,这些都是一线客;)

从…开始:

df
  cluster load_date budget actual fixed_price
0       A  1/1/2014   1000   4000           Y
1       A  2/1/2014  12000  10000           Y
2       A  3/1/2014  36000   2000           Y
3       B  4/1/2014  15000  10000           N
4       B  4/1/2014  12000  11500           N
5       B  4/1/2014  90000  11000           N
6       C  7/1/2014  22000  18000           N
7       C  8/1/2014  30000  28960           N
8       C  9/1/2014  53000  51200           N

潜在运营概述:

ser_aggCol (collapse each column to a list)
cluster          [A, A, A, B, B, B, C, C, C]
load_date      [1/1/2014, 2/1/2014, 3/1/2...
budget         [1000, 12000, 36000, 15000...
actual         [4000, 10000, 2000, 10000,...
fixed_price      [Y, Y, Y, N, N, N, N, N, N]
dtype: object


ser_aggRows (collapse each row to a list)
0     [A, 1/1/2014, 1000, 4000, Y]
1    [A, 2/1/2014, 12000, 10000...
2    [A, 3/1/2014, 36000, 2000, Y]
3    [B, 4/1/2014, 15000, 10000...
4    [B, 4/1/2014, 12000, 11500...
5    [B, 4/1/2014, 90000, 11000...
6    [C, 7/1/2014, 22000, 18000...
7    [C, 8/1/2014, 30000, 28960...
8    [C, 9/1/2014, 53000, 51200...
dtype: object


df_gr (here you get lists for each cluster)
                             load_date                 budget                 actual fixed_price
cluster                                                                                         
A        [1/1/2014, 2/1/2014, 3/1/2...   [1000, 12000, 36000]    [4000, 10000, 2000]   [Y, Y, Y]
B        [4/1/2014, 4/1/2014, 4/1/2...  [15000, 12000, 90000]  [10000, 11500, 11000]   [N, N, N]
C        [7/1/2014, 8/1/2014, 9/1/2...  [22000, 30000, 53000]  [18000, 28960, 51200]   [N, N, N]


a list of separate dataframes for each cluster

df for cluster A
  cluster load_date budget actual fixed_price
0       A  1/1/2014   1000   4000           Y
1       A  2/1/2014  12000  10000           Y
2       A  3/1/2014  36000   2000           Y

df for cluster B
  cluster load_date budget actual fixed_price
3       B  4/1/2014  15000  10000           N
4       B  4/1/2014  12000  11500           N
5       B  4/1/2014  90000  11000           N

df for cluster C
  cluster load_date budget actual fixed_price
6       C  7/1/2014  22000  18000           N
7       C  8/1/2014  30000  28960           N
8       C  9/1/2014  53000  51200           N

just the values of column load_date
0    1/1/2014
1    2/1/2014
2    3/1/2014
3    4/1/2014
4    4/1/2014
5    4/1/2014
6    7/1/2014
7    8/1/2014
8    9/1/2014
Name: load_date, dtype: object


just the values of column number 2
0     1000
1    12000
2    36000
3    15000
4    12000
5    90000
6    22000
7    30000
8    53000
Name: budget, dtype: object


just the values of row number 7
cluster               C
load_date      8/1/2014
budget            30000
actual            28960
fixed_price           N
Name: 7, dtype: object


============================== JUST FOR COMPLETENESS ==============================


you can convert a series to a list
['C', '8/1/2014', '30000', '28960', 'N']
<class 'list'>


you can convert a dataframe to a nested list
[['A', '1/1/2014', '1000', '4000', 'Y'], ['A', '2/1/2014', '12000', '10000', 'Y'], ['A', '3/1/2014', '36000', '2000', 'Y'], ['B', '4/1/2014', '15000', '10000', 'N'], ['B', '4/1/2014', '12000', '11500', 'N'], ['B', '4/1/2014', '90000', '11000', 'N'], ['C', '7/1/2014', '22000', '18000', 'N'], ['C', '8/1/2014', '30000', '28960', 'N'], ['C', '9/1/2014', '53000', '51200', 'N']]
<class 'list'>

the content of a dataframe can be accessed as a numpy.ndarray
[['A' '1/1/2014' '1000' '4000' 'Y']
 ['A' '2/1/2014' '12000' '10000' 'Y']
 ['A' '3/1/2014' '36000' '2000' 'Y']
 ['B' '4/1/2014' '15000' '10000' 'N']
 ['B' '4/1/2014' '12000' '11500' 'N']
 ['B' '4/1/2014' '90000' '11000' 'N']
 ['C' '7/1/2014' '22000' '18000' 'N']
 ['C' '8/1/2014' '30000' '28960' 'N']
 ['C' '9/1/2014' '53000' '51200' 'N']]
<class 'numpy.ndarray'>

码:

# prefix ser refers to pd.Series object
# prefix df refers to pd.DataFrame object
# prefix lst refers to list object

import pandas as pd
import numpy as np

df=pd.DataFrame([
        ['A',   '1/1/2014',    '1000',    '4000',    'Y'],
        ['A',   '2/1/2014',    '12000',   '10000',   'Y'],
        ['A',   '3/1/2014',    '36000',   '2000',    'Y'],
        ['B',   '4/1/2014',    '15000',   '10000',   'N'],
        ['B',   '4/1/2014',    '12000',   '11500',   'N'],
        ['B',   '4/1/2014',    '90000',   '11000',   'N'],
        ['C',   '7/1/2014',    '22000',   '18000',   'N'],
        ['C',   '8/1/2014',    '30000',   '28960',   'N'],
        ['C',   '9/1/2014',    '53000',   '51200',   'N']
        ], columns=['cluster', 'load_date',   'budget',  'actual',  'fixed_price'])
print('df',df, sep='\n', end='\n\n')

ser_aggCol=df.aggregate(lambda x: [x.tolist()], axis=0).map(lambda x:x[0])
print('ser_aggCol (collapse each column to a list)',ser_aggCol, sep='\n', end='\n\n\n')

ser_aggRows=pd.Series(df.values.tolist()) 
print('ser_aggRows (collapse each row to a list)',ser_aggRows, sep='\n', end='\n\n\n')

df_gr=df.groupby('cluster').agg(lambda x: list(x))
print('df_gr (here you get lists for each cluster)',df_gr, sep='\n', end='\n\n\n')

lst_dfFiltGr=[ df.loc[df['cluster']==val,:] for val in df['cluster'].unique() ]
print('a list of separate dataframes for each cluster', sep='\n', end='\n\n')
for dfTmp in lst_dfFiltGr:
    print('df for cluster '+str(dfTmp.loc[dfTmp.index[0],'cluster']),dfTmp, sep='\n', end='\n\n')

ser_singleColLD=df.loc[:,'load_date']
print('just the values of column load_date',ser_singleColLD, sep='\n', end='\n\n\n')

ser_singleCol2=df.iloc[:,2]
print('just the values of column number 2',ser_singleCol2, sep='\n', end='\n\n\n')

ser_singleRow7=df.iloc[7,:]
print('just the values of row number 7',ser_singleRow7, sep='\n', end='\n\n\n')

print('='*30+' JUST FOR COMPLETENESS '+'='*30, end='\n\n\n')

lst_fromSer=ser_singleRow7.tolist()
print('you can convert a series to a list',lst_fromSer, type(lst_fromSer), sep='\n', end='\n\n\n')

lst_fromDf=df.values.tolist()
print('you can convert a dataframe to a nested list',lst_fromDf, type(lst_fromDf), sep='\n', end='\n\n')

arr_fromDf=df.values
print('the content of a dataframe can be accessed as a numpy.ndarray',arr_fromDf, type(arr_fromDf), sep='\n', end='\n\n')

如所指出的cs95其他方法应优先于只大熊猫.values属性从大熊猫版本0.24上看到这里。我在这里使用它,因为大多数人(到2019年)仍将具有较旧的版本,该版本不支持新的建议。您可以使用print(pd.__version__)

As this question attained a lot of attention and there are several ways to fulfill your task, let me present several options.

Those are all one-liners by the way ;)

Starting with:

df
  cluster load_date budget actual fixed_price
0       A  1/1/2014   1000   4000           Y
1       A  2/1/2014  12000  10000           Y
2       A  3/1/2014  36000   2000           Y
3       B  4/1/2014  15000  10000           N
4       B  4/1/2014  12000  11500           N
5       B  4/1/2014  90000  11000           N
6       C  7/1/2014  22000  18000           N
7       C  8/1/2014  30000  28960           N
8       C  9/1/2014  53000  51200           N

Overview of potential operations:

ser_aggCol (collapse each column to a list)
cluster          [A, A, A, B, B, B, C, C, C]
load_date      [1/1/2014, 2/1/2014, 3/1/2...
budget         [1000, 12000, 36000, 15000...
actual         [4000, 10000, 2000, 10000,...
fixed_price      [Y, Y, Y, N, N, N, N, N, N]
dtype: object


ser_aggRows (collapse each row to a list)
0     [A, 1/1/2014, 1000, 4000, Y]
1    [A, 2/1/2014, 12000, 10000...
2    [A, 3/1/2014, 36000, 2000, Y]
3    [B, 4/1/2014, 15000, 10000...
4    [B, 4/1/2014, 12000, 11500...
5    [B, 4/1/2014, 90000, 11000...
6    [C, 7/1/2014, 22000, 18000...
7    [C, 8/1/2014, 30000, 28960...
8    [C, 9/1/2014, 53000, 51200...
dtype: object


df_gr (here you get lists for each cluster)
                             load_date                 budget                 actual fixed_price
cluster                                                                                         
A        [1/1/2014, 2/1/2014, 3/1/2...   [1000, 12000, 36000]    [4000, 10000, 2000]   [Y, Y, Y]
B        [4/1/2014, 4/1/2014, 4/1/2...  [15000, 12000, 90000]  [10000, 11500, 11000]   [N, N, N]
C        [7/1/2014, 8/1/2014, 9/1/2...  [22000, 30000, 53000]  [18000, 28960, 51200]   [N, N, N]


a list of separate dataframes for each cluster

df for cluster A
  cluster load_date budget actual fixed_price
0       A  1/1/2014   1000   4000           Y
1       A  2/1/2014  12000  10000           Y
2       A  3/1/2014  36000   2000           Y

df for cluster B
  cluster load_date budget actual fixed_price
3       B  4/1/2014  15000  10000           N
4       B  4/1/2014  12000  11500           N
5       B  4/1/2014  90000  11000           N

df for cluster C
  cluster load_date budget actual fixed_price
6       C  7/1/2014  22000  18000           N
7       C  8/1/2014  30000  28960           N
8       C  9/1/2014  53000  51200           N

just the values of column load_date
0    1/1/2014
1    2/1/2014
2    3/1/2014
3    4/1/2014
4    4/1/2014
5    4/1/2014
6    7/1/2014
7    8/1/2014
8    9/1/2014
Name: load_date, dtype: object


just the values of column number 2
0     1000
1    12000
2    36000
3    15000
4    12000
5    90000
6    22000
7    30000
8    53000
Name: budget, dtype: object


just the values of row number 7
cluster               C
load_date      8/1/2014
budget            30000
actual            28960
fixed_price           N
Name: 7, dtype: object


============================== JUST FOR COMPLETENESS ==============================


you can convert a series to a list
['C', '8/1/2014', '30000', '28960', 'N']
<class 'list'>


you can convert a dataframe to a nested list
[['A', '1/1/2014', '1000', '4000', 'Y'], ['A', '2/1/2014', '12000', '10000', 'Y'], ['A', '3/1/2014', '36000', '2000', 'Y'], ['B', '4/1/2014', '15000', '10000', 'N'], ['B', '4/1/2014', '12000', '11500', 'N'], ['B', '4/1/2014', '90000', '11000', 'N'], ['C', '7/1/2014', '22000', '18000', 'N'], ['C', '8/1/2014', '30000', '28960', 'N'], ['C', '9/1/2014', '53000', '51200', 'N']]
<class 'list'>

the content of a dataframe can be accessed as a numpy.ndarray
[['A' '1/1/2014' '1000' '4000' 'Y']
 ['A' '2/1/2014' '12000' '10000' 'Y']
 ['A' '3/1/2014' '36000' '2000' 'Y']
 ['B' '4/1/2014' '15000' '10000' 'N']
 ['B' '4/1/2014' '12000' '11500' 'N']
 ['B' '4/1/2014' '90000' '11000' 'N']
 ['C' '7/1/2014' '22000' '18000' 'N']
 ['C' '8/1/2014' '30000' '28960' 'N']
 ['C' '9/1/2014' '53000' '51200' 'N']]
<class 'numpy.ndarray'>

code:

# prefix ser refers to pd.Series object
# prefix df refers to pd.DataFrame object
# prefix lst refers to list object

import pandas as pd
import numpy as np

df=pd.DataFrame([
        ['A',   '1/1/2014',    '1000',    '4000',    'Y'],
        ['A',   '2/1/2014',    '12000',   '10000',   'Y'],
        ['A',   '3/1/2014',    '36000',   '2000',    'Y'],
        ['B',   '4/1/2014',    '15000',   '10000',   'N'],
        ['B',   '4/1/2014',    '12000',   '11500',   'N'],
        ['B',   '4/1/2014',    '90000',   '11000',   'N'],
        ['C',   '7/1/2014',    '22000',   '18000',   'N'],
        ['C',   '8/1/2014',    '30000',   '28960',   'N'],
        ['C',   '9/1/2014',    '53000',   '51200',   'N']
        ], columns=['cluster', 'load_date',   'budget',  'actual',  'fixed_price'])
print('df',df, sep='\n', end='\n\n')

ser_aggCol=df.aggregate(lambda x: [x.tolist()], axis=0).map(lambda x:x[0])
print('ser_aggCol (collapse each column to a list)',ser_aggCol, sep='\n', end='\n\n\n')

ser_aggRows=pd.Series(df.values.tolist()) 
print('ser_aggRows (collapse each row to a list)',ser_aggRows, sep='\n', end='\n\n\n')

df_gr=df.groupby('cluster').agg(lambda x: list(x))
print('df_gr (here you get lists for each cluster)',df_gr, sep='\n', end='\n\n\n')

lst_dfFiltGr=[ df.loc[df['cluster']==val,:] for val in df['cluster'].unique() ]
print('a list of separate dataframes for each cluster', sep='\n', end='\n\n')
for dfTmp in lst_dfFiltGr:
    print('df for cluster '+str(dfTmp.loc[dfTmp.index[0],'cluster']),dfTmp, sep='\n', end='\n\n')

ser_singleColLD=df.loc[:,'load_date']
print('just the values of column load_date',ser_singleColLD, sep='\n', end='\n\n\n')

ser_singleCol2=df.iloc[:,2]
print('just the values of column number 2',ser_singleCol2, sep='\n', end='\n\n\n')

ser_singleRow7=df.iloc[7,:]
print('just the values of row number 7',ser_singleRow7, sep='\n', end='\n\n\n')

print('='*30+' JUST FOR COMPLETENESS '+'='*30, end='\n\n\n')

lst_fromSer=ser_singleRow7.tolist()
print('you can convert a series to a list',lst_fromSer, type(lst_fromSer), sep='\n', end='\n\n\n')

lst_fromDf=df.values.tolist()
print('you can convert a dataframe to a nested list',lst_fromDf, type(lst_fromDf), sep='\n', end='\n\n')

arr_fromDf=df.values
print('the content of a dataframe can be accessed as a numpy.ndarray',arr_fromDf, type(arr_fromDf), sep='\n', end='\n\n')

as pointed out by cs95 other methods should be preferred over pandas .values attribute from pandas version 0.24 on see here. I use it here, because most people will (by 2019) still have an older version, which does not support the new recommendations. You can check your version with print(pd.__version__)


回答 4

如果您的列只有一个值,pd.series.tolist()则将产生错误。为确保它适用于所有情况,请使用以下代码:

(
    df
        .filter(['column_name'])
        .values
        .reshape(1, -1)
        .ravel()
        .tolist()
)

If your column will only have one value something like pd.series.tolist() will produce an error. To guarantee that it will work for all cases, use the code below:

(
    df
        .filter(['column_name'])
        .values
        .reshape(1, -1)
        .ravel()
        .tolist()
)

回答 5

假设读取excel工作表后数据框的名称为df,获取一个空列表(例如dataList),逐行遍历数据框,然后像以下内容一样追加到您的空列表中:

dataList = [] #empty list
for index, row in df.iterrows(): 
    mylist = [row.cluster, row.load_date, row.budget, row.actual, row.fixed_price]
    dataList.append(mylist)

要么,

dataList = [] #empty list
for row in df.itertuples(): 
    mylist = [row.cluster, row.load_date, row.budget, row.actual, row.fixed_price]
    dataList.append(mylist)

不,如果您打印dataList,则将在中获得每一行作为列表dataList

Assuming the name of the dataframe after reading the excel sheet is df, take an empty list (e.g. dataList), iterate through the dataframe row by row and append to your empty list like-

dataList = [] #empty list
for index, row in df.iterrows(): 
    mylist = [row.cluster, row.load_date, row.budget, row.actual, row.fixed_price]
    dataList.append(mylist)

Or,

dataList = [] #empty list
for row in df.itertuples(): 
    mylist = [row.cluster, row.load_date, row.budget, row.actual, row.fixed_price]
    dataList.append(mylist)

No, if you print the dataList, you will get each rows as a list in the dataList.


回答 6

 amount = list()
    for col in df.columns:
        val = list(df[col])
        for v in val:
            amount.append(v)
 amount = list()
    for col in df.columns:
        val = list(df[col])
        for v in val:
            amount.append(v)

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。