问题:从熊猫DataFrame中按部分字符串选择

我有一个DataFrame4列,其中2个包含字符串值。我想知道是否有一种方法可以根据针对特定列的部分字符串匹配来选择行?

换句话说,一个函数或lambda函数将执行以下操作

re.search(pattern, cell_in_question) 

返回一个布尔值。我熟悉的语法,df[df['A'] == "hello world"]但似乎找不到用部分字符串匹配说的方法'hello'

有人可以指出正确的方向吗?

I have a DataFrame with 4 columns of which 2 contain string values. I was wondering if there was a way to select rows based on a partial string match against a particular column?

In other words, a function or lambda function that would do something like

re.search(pattern, cell_in_question) 

returning a boolean. I am familiar with the syntax of df[df['A'] == "hello world"] but can’t seem to find a way to do the same with a partial string match say 'hello'.

Would someone be able to point me in the right direction?


回答 0

基于github问题#620,看来您很快将能够执行以下操作:

df[df['A'].str.contains("hello")]

更新:熊猫0.8.1及更高版本中提供了矢量化字符串方法(即Series.str)

Based on github issue #620, it looks like you’ll soon be able to do the following:

df[df['A'].str.contains("hello")]

Update: vectorized string methods (i.e., Series.str) are available in pandas 0.8.1 and up.


回答 1

我尝试了上面提出的解决方案:

df[df["A"].str.contains("Hello|Britain")]

并得到一个错误:

ValueError:无法使用包含NA / NaN值的数组进行遮罩

您可以将NA值转换为False,如下所示:

df[df["A"].str.contains("Hello|Britain", na=False)]

I tried the proposed solution above:

df[df["A"].str.contains("Hello|Britain")]

and got an error:

ValueError: cannot mask with array containing NA / NaN values

you can transform NA values into False, like this:

df[df["A"].str.contains("Hello|Britain", na=False)]

回答 2

如何从熊猫DataFrame中按部分字符串选择?

这篇文章是为想要

  • 在字符串列中搜索子字符串(最简单的情况)
  • 搜索多个子字符串(类似于isin
  • 匹配文本中的整个单词(例如,“蓝色”应匹配“天空是蓝色”,而不是“ bluejay”)
  • 匹配多个完整词
  • 了解“ ValueError:无法使用包含NA / NaN值的向量进行索引”背后的原因

…并想进一步了解应优先采用哪种方法。

(PS:我在类似主题上看到了很多问题,我认为最好把它留在这里。)


基本子串搜索

# setup
df1 = pd.DataFrame({'col': ['foo', 'foobar', 'bar', 'baz']})
df1

      col
0     foo
1  foobar
2     bar
3     baz

str.contains可用于执行子字符串搜索或基于正则表达式的搜索。搜索默认为基于正则表达式,除非您明确禁用它。

这是一个基于正则表达式的搜索示例,

# find rows in `df1` which contain "foo" followed by something
df1[df1['col'].str.contains(r'foo(?!$)')]

      col
1  foobar

有时,不需要进行正则表达式搜索,因此请指定regex=False为禁用它。

#select all rows containing "foo"
df1[df1['col'].str.contains('foo', regex=False)]
# same as df1[df1['col'].str.contains('foo')] but faster.

      col
0     foo
1  foobar

在性能方面,正则表达式搜索比子字符串搜索慢:

df2 = pd.concat([df1] * 1000, ignore_index=True)

%timeit df2[df2['col'].str.contains('foo')]
%timeit df2[df2['col'].str.contains('foo', regex=False)]

6.31 ms ± 126 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.8 ms ± 241 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

如果不需要,请避免使用基于正则表达式的搜索。

解决ValueError小号
有时,执行字符串搜索和对结果的过滤会导致

ValueError: cannot index with vector containing NA / NaN values

这通常是由于对象列中存在混合数据或NaN,

s = pd.Series(['foo', 'foobar', np.nan, 'bar', 'baz', 123])
s.str.contains('foo|bar')

0     True
1     True
2      NaN
3     True
4    False
5      NaN
dtype: object


s[s.str.contains('foo|bar')]
# ---------------------------------------------------------------------------
# ValueError                                Traceback (most recent call last)

非字符串的任何内容都不能应用字符串方法,因此结果自然是NaN。在这种情况下,请指定na=False忽略非字符串数据,

s.str.contains('foo|bar', na=False)

0     True
1     True
2    False
3     True
4    False
5    False
dtype: bool

多个子串搜索

通过使用正则表达式OR管道进行正则表达式搜索,最容易实现这一点。

# Slightly modified example.
df4 = pd.DataFrame({'col': ['foo abc', 'foobar xyz', 'bar32', 'baz 45']})
df4

          col
0     foo abc
1  foobar xyz
2       bar32
3      baz 45

df4[df4['col'].str.contains(r'foo|baz')]

          col
0     foo abc
1  foobar xyz
3      baz 45

您还可以创建一个术语列表,然后将其加入:

terms = ['foo', 'baz']
df4[df4['col'].str.contains('|'.join(terms))]

          col
0     foo abc
1  foobar xyz
3      baz 45

有时,明智的做法是将您的术语转义,以防它们包含可被解释为正则表达式元字符的字符。如果您的条款包含以下任何字符…

. ^ $ * + ? { } [ ] \ | ( )

然后,你就需要使用re.escape逃避它们:

import re
df4[df4['col'].str.contains('|'.join(map(re.escape, terms)))]

          col
0     foo abc
1  foobar xyz
3      baz 45

re.escape 具有转义特殊字符的效果,因此可以按字面意义对待它们。

re.escape(r'.foo^')
# '\\.foo\\^'

匹配全词

默认情况下,子字符串搜索将搜索指定的子字符串/模式,而不管其是否为完整单词。为了仅匹配完整的单词,我们将需要在此处使用正则表达式-特别是,我们的模式将需要指定单词边界(\b)。

例如,

df3 = pd.DataFrame({'col': ['the sky is blue', 'bluejay by the window']})
df3

                     col
0        the sky is blue
1  bluejay by the window

现在考虑

df3[df3['col'].str.contains('blue')]

                     col
0        the sky is blue
1  bluejay by the window

伏/秒

df3[df3['col'].str.contains(r'\bblue\b')]

               col
0  the sky is blue

多个全字搜索

与上述类似,不同之处\b在于我们在连接的模式中添加了字边界()。

p = r'\b(?:{})\b'.format('|'.join(map(re.escape, terms)))
df4[df4['col'].str.contains(p)]

       col
0  foo abc
3   baz 45

p这个样子的,

p
# '\\b(?:foo|baz)\\b'

一个很好的选择:使用列表推导

因为你能!而且你应该!它们通常比字符串方法快一点,因为字符串方法难以向量化并且通常具有循环实现。

代替,

df1[df1['col'].str.contains('foo', regex=False)]

in在列表组合中使用运算符,

df1[['foo' in x for x in df1['col']]]

       col
0  foo abc
1   foobar

代替,

regex_pattern = r'foo(?!$)'
df1[df1['col'].str.contains(regex_pattern)]

在列表组合中使用re.compile(用于缓存正则表达式)+ Pattern.search

p = re.compile(regex_pattern, flags=re.IGNORECASE)
df1[[bool(p.search(x)) for x in df1['col']]]

      col
1  foobar

如果“ col”具有NaN,则代替

df1[df1['col'].str.contains(regex_pattern, na=False)]

采用,

def try_search(p, x):
    try:
        return bool(p.search(x))
    except TypeError:
        return False

p = re.compile(regex_pattern)
df1[[try_search(p, x) for x in df1['col']]]

      col
1  foobar

偏字符串匹配更多选项:np.char.findnp.vectorizeDataFrame.query

除了str.contains和列出理解,您还可以使用以下替代方法。

np.char.find
仅支持子字符串搜索(读取:无正则表达式)。

df4[np.char.find(df4['col'].values.astype(str), 'foo') > -1]

          col
0     foo abc
1  foobar xyz


这是一个循环的包装器,但是比大多数pandas str方法要少。

f = np.vectorize(lambda haystack, needle: needle in haystack)
f(df1['col'], 'foo')
# array([ True,  True, False, False])

df1[f(df1['col'], 'foo')]

       col
0  foo abc
1   foobar

正则表达式解决方案可能:

regex_pattern = r'foo(?!$)'
p = re.compile(regex_pattern)
f = np.vectorize(lambda x: pd.notna(x) and bool(p.search(x)))
df1[f(df1['col'])]

      col
1  foobar

DataFrame.query
通过python引擎支持字符串方法。这没有提供明显的性能优势,但是对于了解是否需要动态生成查询很有用。

df1.query('col.str.contains("foo")', engine='python')

      col
0     foo
1  foobar

有关更多信息queryeval方法系列,请参见使用pd.eval()在大熊猫中进行动态表达评估。


推荐用法

  1. (第一) str.contains,因为它简单易用,可以处理NaN和混合数据
  2. 列出其性能的理解(特别是如果您的数据是纯字符串)
  3. np.vectorize
  4. (持续) df.query

How do I select by partial string from a pandas DataFrame?

This post is meant for readers who want to

  • search for a substring in a string column (the simplest case)
  • search for multiple substrings (similar to isin)
  • match a whole word from text (e.g., “blue” should match “the sky is blue” but not “bluejay”)
  • match multiple whole words
  • Understand the reason behind “ValueError: cannot index with vector containing NA / NaN values”

…and would like to know more about what methods should be preferred over others.

(P.S.: I’ve seen a lot of questions on similar topics, I thought it would be good to leave this here.)


Basic Substring Search

# setup
df1 = pd.DataFrame({'col': ['foo', 'foobar', 'bar', 'baz']})
df1

      col
0     foo
1  foobar
2     bar
3     baz

str.contains can be used to perform either substring searches or regex based search. The search defaults to regex-based unless you explicitly disable it.

Here is an example of regex-based search,

# find rows in `df1` which contain "foo" followed by something
df1[df1['col'].str.contains(r'foo(?!$)')]

      col
1  foobar

Sometimes regex search is not required, so specify regex=False to disable it.

#select all rows containing "foo"
df1[df1['col'].str.contains('foo', regex=False)]
# same as df1[df1['col'].str.contains('foo')] but faster.

      col
0     foo
1  foobar

Performance wise, regex search is slower than substring search:

df2 = pd.concat([df1] * 1000, ignore_index=True)

%timeit df2[df2['col'].str.contains('foo')]
%timeit df2[df2['col'].str.contains('foo', regex=False)]

6.31 ms ± 126 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.8 ms ± 241 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Avoid using regex-based search if you don’t need it.

Addressing ValueErrors
Sometimes, performing a substring search and filtering on the result will result in

ValueError: cannot index with vector containing NA / NaN values

This is usually because of mixed data or NaNs in your object column,

s = pd.Series(['foo', 'foobar', np.nan, 'bar', 'baz', 123])
s.str.contains('foo|bar')

0     True
1     True
2      NaN
3     True
4    False
5      NaN
dtype: object


s[s.str.contains('foo|bar')]
# ---------------------------------------------------------------------------
# ValueError                                Traceback (most recent call last)

Anything that is not a string cannot have string methods applied on it, so the result is NaN (naturally). In this case, specify na=False to ignore non-string data,

s.str.contains('foo|bar', na=False)

0     True
1     True
2    False
3     True
4    False
5    False
dtype: bool

Multiple Substring Search

This is most easily achieved through a regex search using the regex OR pipe.

# Slightly modified example.
df4 = pd.DataFrame({'col': ['foo abc', 'foobar xyz', 'bar32', 'baz 45']})
df4

          col
0     foo abc
1  foobar xyz
2       bar32
3      baz 45

df4[df4['col'].str.contains(r'foo|baz')]

          col
0     foo abc
1  foobar xyz
3      baz 45

You can also create a list of terms, then join them:

terms = ['foo', 'baz']
df4[df4['col'].str.contains('|'.join(terms))]

          col
0     foo abc
1  foobar xyz
3      baz 45

Sometimes, it is wise to escape your terms in case they have characters that can be interpreted as regex metacharacters. If your terms contain any of the following characters…

. ^ $ * + ? { } [ ] \ | ( )

Then, you’ll need to use re.escape to escape them:

import re
df4[df4['col'].str.contains('|'.join(map(re.escape, terms)))]

          col
0     foo abc
1  foobar xyz
3      baz 45

re.escape has the effect of escaping the special characters so they’re treated literally.

re.escape(r'.foo^')
# '\\.foo\\^'

Matching Entire Word(s)

By default, the substring search searches for the specified substring/pattern regardless of whether it is full word or not. To only match full words, we will need to make use of regular expressions here—in particular, our pattern will need to specify word boundaries (\b).

For example,

df3 = pd.DataFrame({'col': ['the sky is blue', 'bluejay by the window']})
df3

                     col
0        the sky is blue
1  bluejay by the window

Now consider,

df3[df3['col'].str.contains('blue')]

                     col
0        the sky is blue
1  bluejay by the window

v/s

df3[df3['col'].str.contains(r'\bblue\b')]

               col
0  the sky is blue

Multiple Whole Word Search

Similar to the above, except we add a word boundary (\b) to the joined pattern.

p = r'\b(?:{})\b'.format('|'.join(map(re.escape, terms)))
df4[df4['col'].str.contains(p)]

       col
0  foo abc
3   baz 45

Where p looks like this,

p
# '\\b(?:foo|baz)\\b'

A Great Alternative: Use List Comprehensions!

Because you can! And you should! They are usually a little bit faster than string methods, because string methods are hard to vectorise and usually have loopy implementations.

Instead of,

df1[df1['col'].str.contains('foo', regex=False)]

Use the in operator inside a list comp,

df1[['foo' in x for x in df1['col']]]

       col
0  foo abc
1   foobar

Instead of,

regex_pattern = r'foo(?!$)'
df1[df1['col'].str.contains(regex_pattern)]

Use re.compile (to cache your regex) + Pattern.search inside a list comp,

p = re.compile(regex_pattern, flags=re.IGNORECASE)
df1[[bool(p.search(x)) for x in df1['col']]]

      col
1  foobar

If “col” has NaNs, then instead of

df1[df1['col'].str.contains(regex_pattern, na=False)]

Use,

def try_search(p, x):
    try:
        return bool(p.search(x))
    except TypeError:
        return False

p = re.compile(regex_pattern)
df1[[try_search(p, x) for x in df1['col']]]

      col
1  foobar

More Options for Partial String Matching: np.char.find, np.vectorize, DataFrame.query.

In addition to str.contains and list comprehensions, you can also use the following alternatives.

np.char.find
Supports substring searches (read: no regex) only.

df4[np.char.find(df4['col'].values.astype(str), 'foo') > -1]

          col
0     foo abc
1  foobar xyz


This is a wrapper around a loop, but with lesser overhead than most pandas str methods.

f = np.vectorize(lambda haystack, needle: needle in haystack)
f(df1['col'], 'foo')
# array([ True,  True, False, False])

df1[f(df1['col'], 'foo')]

       col
0  foo abc
1   foobar

Regex solutions possible:

regex_pattern = r'foo(?!$)'
p = re.compile(regex_pattern)
f = np.vectorize(lambda x: pd.notna(x) and bool(p.search(x)))
df1[f(df1['col'])]

      col
1  foobar

DataFrame.query
Supports string methods through the python engine. This offers no visible performance benefits, but is nonetheless useful to know if you need to dynamically generate your queries.

df1.query('col.str.contains("foo")', engine='python')

      col
0     foo
1  foobar

More information on query and eval family of methods can be found at Dynamic Expression Evaluation in pandas using pd.eval().


Recommended Usage Precedence

  1. (First) str.contains, for its simplicity and ease handling NaNs and mixed data
  2. List comprehensions, for its performance (especially if your data is purely strings)
  3. np.vectorize
  4. (Last) df.query

回答 3

如果有人想知道如何执行相关问题:“按部分字符串选择列”

采用:

df.filter(like='hello')  # select columns which contain the word hello

要通过部分字符串匹配选择行,请传递axis=0到过滤器:

# selects rows which contain the word hello in their index label
df.filter(like='hello', axis=0)  

If anyone wonders how to perform a related problem: “Select column by partial string”

Use:

df.filter(like='hello')  # select columns which contain the word hello

And to select rows by partial string matching, pass axis=0 to filter:

# selects rows which contain the word hello in their index label
df.filter(like='hello', axis=0)  

回答 4

快速说明:如果要基于索引中包含的部分字符串进行选择,请尝试以下操作:

df['stridx']=df.index
df[df['stridx'].str.contains("Hello|Britain")]

Quick note: if you want to do selection based on a partial string contained in the index, try the following:

df['stridx']=df.index
df[df['stridx'].str.contains("Hello|Britain")]

回答 5

说您有以下内容DataFrame

>>> df = pd.DataFrame([['hello', 'hello world'], ['abcd', 'defg']], columns=['a','b'])
>>> df
       a            b
0  hello  hello world
1   abcd         defg

您始终可以in在lambda表达式中使用运算符来创建过滤器。

>>> df.apply(lambda x: x['a'] in x['b'], axis=1)
0     True
1    False
dtype: bool

这里的技巧是使用中的axis=1选项apply将元素逐行(而不是逐列)传递给lambda函数。

Say you have the following DataFrame:

>>> df = pd.DataFrame([['hello', 'hello world'], ['abcd', 'defg']], columns=['a','b'])
>>> df
       a            b
0  hello  hello world
1   abcd         defg

You can always use the in operator in a lambda expression to create your filter.

>>> df.apply(lambda x: x['a'] in x['b'], axis=1)
0     True
1    False
dtype: bool

The trick here is to use the axis=1 option in the apply to pass elements to the lambda function row by row, as opposed to column by column.


回答 6

这就是我为部分字符串匹配所做的最终结果。如果有人有更有效的方法,请告诉我。

def stringSearchColumn_DataFrame(df, colName, regex):
    newdf = DataFrame()
    for idx, record in df[colName].iteritems():

        if re.search(regex, record):
            newdf = concat([df[df[colName] == record], newdf], ignore_index=True)

    return newdf

Here’s what I ended up doing for partial string matches. If anyone has a more efficient way of doing this please let me know.

def stringSearchColumn_DataFrame(df, colName, regex):
    newdf = DataFrame()
    for idx, record in df[colName].iteritems():

        if re.search(regex, record):
            newdf = concat([df[df[colName] == record], newdf], ignore_index=True)

    return newdf

回答 7

对于包含特殊字符的字符串,使用contains效果不佳。找到工作了。

df[df['A'].str.find("hello") != -1]

Using contains didn’t work well for my string with special characters. Find worked though.

df[df['A'].str.find("hello") != -1]

回答 8

在此之前,有一些答案可以完成所要求的功能,无论如何,我想以最普遍的方式展示:

df.filter(regex=".*STRING_YOU_LOOK_FOR.*")

这样,无论编写哪种方式,您都可以获取要查找的列。

(显然,您必须为每种情况编写正确的regex表达式)

There are answers before this which accomplish the asked feature, anyway I would like to show the most generally way:

df.filter(regex=".*STRING_YOU_LOOK_FOR.*")

This way let’s you get the column you look for whatever the way is wrote.

( Obviusly, you have to write the proper regex expression for each case )


回答 9

也许您想在Pandas数据框的所有列中搜索一些文本,而不仅仅是在它们的子集中。在这种情况下,以下代码将有所帮助。

df[df.apply(lambda row: row.astype(str).str.contains('String To Find').any(), axis=1)]

警告。此方法相对较慢,但很方便。

Maybe you want to search for some text in all columns of the Pandas dataframe, and not just in the subset of them. In this case, the following code will help.

df[df.apply(lambda row: row.astype(str).str.contains('String To Find').any(), axis=1)]

Warning. This method is relatively slow, albeit convenient.


回答 10

如果您需要在pandas dataframe列中进行不区分大小写的搜索,请执行以下操作:

df[df['A'].str.contains("hello", case=False)]

Should you need to do a case insensitive search for a string in a pandas dataframe column:

df[df['A'].str.contains("hello", case=False)]

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。