问题:从python pandas中的列名获取列索引

在R中,当您需要根据列名检索列索引时,可以执行此操作

idx <- which(names(my_data)==my_colum_name)

有没有办法对熊猫数据框做同样的事情?

In R when you need to retrieve a column index based on the name of the column you could do

idx <- which(names(my_data)==my_colum_name)

Is there a way to do the same with pandas dataframes?


回答 0

当然可以使用.get_loc()

In [45]: df = DataFrame({"pear": [1,2,3], "apple": [2,3,4], "orange": [3,4,5]})

In [46]: df.columns
Out[46]: Index([apple, orange, pear], dtype=object)

In [47]: df.columns.get_loc("pear")
Out[47]: 2

虽然老实说,我自己通常不需要这个。通常,通过名称进行访问可以实现我想要的功能(df["pear"],,df[["apple", "orange"]]或者也许df.columns.isin(["orange", "pear"])),尽管我可以肯定地看到一些您需要索引号的情况。

Sure, you can use .get_loc():

In [45]: df = DataFrame({"pear": [1,2,3], "apple": [2,3,4], "orange": [3,4,5]})

In [46]: df.columns
Out[46]: Index([apple, orange, pear], dtype=object)

In [47]: df.columns.get_loc("pear")
Out[47]: 2

although to be honest I don’t often need this myself. Usually access by name does what I want it to (df["pear"], df[["apple", "orange"]], or maybe df.columns.isin(["orange", "pear"])), although I can definitely see cases where you’d want the index number.


回答 1

这是通过列表理解的解决方案。cols是要获取索引的列的列表:

[df.columns.get_loc(c) for c in cols if c in df]

Here is a solution through list comprehension. cols is the list of columns to get index for:

[df.columns.get_loc(c) for c in cols if c in df]

回答 2

DSM的解决方案有效,但是如果您想要直接等效的解决方案,则which可以这样做(df.columns == name).nonzero()

DSM’s solution works, but if you wanted a direct equivalent to which you could do (df.columns == name).nonzero()


回答 3

当您要查找多个列匹配项时,可以使用使用的矢量化解决方案。因此,df作为query_cols要搜索的数据框和列名,实现将是-

def column_index(df, query_cols):
    cols = df.columns.values
    sidx = np.argsort(cols)
    return sidx[np.searchsorted(cols,query_cols,sorter=sidx)]

样品运行-

In [162]: df
Out[162]: 
   apple  banana  pear  orange  peach
0      8       3     4       4      2
1      4       4     3       0      1
2      1       2     6       8      1

In [163]: column_index(df, ['peach', 'banana', 'apple'])
Out[163]: array([4, 1, 0])

When you might be looking to find multiple column matches, a vectorized solution using could be used. Thus, with df as the dataframe and query_cols as the column names to be searched for, an implementation would be –

def column_index(df, query_cols):
    cols = df.columns.values
    sidx = np.argsort(cols)
    return sidx[np.searchsorted(cols,query_cols,sorter=sidx)]

Sample run –

In [162]: df
Out[162]: 
   apple  banana  pear  orange  peach
0      8       3     4       4      2
1      4       4     3       0      1
2      1       2     6       8      1

In [163]: column_index(df, ['peach', 'banana', 'apple'])
Out[163]: array([4, 1, 0])

回答 4

如果您希望从列位置获得列名(OP问题的另一种方法),则可以使用:

>>> df.columns.get_values()[location]

使用@DSM示例:

>>> df = DataFrame({"pear": [1,2,3], "apple": [2,3,4], "orange": [3,4,5]})

>>> df.columns

Index(['apple', 'orange', 'pear'], dtype='object')

>>> df.columns.get_values()[1]

'orange'

其他方法:

df.iloc[:,1].name

df.columns[location] #(thanks to @roobie-nuby for pointing that out in comments.) 

In case you want the column name from the column location (the other way around to the OP question), you can use:

>>> df.columns.get_values()[location]

Using @DSM Example:

>>> df = DataFrame({"pear": [1,2,3], "apple": [2,3,4], "orange": [3,4,5]})

>>> df.columns

Index(['apple', 'orange', 'pear'], dtype='object')

>>> df.columns.get_values()[1]

'orange'

Other ways:

df.iloc[:,1].name

df.columns[location] #(thanks to @roobie-nuby for pointing that out in comments.) 

回答 5

这个怎么样:

df = DataFrame({"pear": [1,2,3], "apple": [2,3,4], "orange": [3,4,5]})
out = np.argwhere(df.columns.isin(['apple', 'orange'])).ravel()
print(out)
[1 2]

how about this:

df = DataFrame({"pear": [1,2,3], "apple": [2,3,4], "orange": [3,4,5]})
out = np.argwhere(df.columns.isin(['apple', 'orange'])).ravel()
print(out)
[1 2]

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。