以最简单的方式将图例添加到Matplotlib中的PyPlot

问题:以最简单的方式将图例添加到Matplotlib中的PyPlot

TL; DR->如何在不创建任何额外变量MatplotlibPyPlot情况下为的线形图创建图例?

请考虑以下图形脚本:

if __name__ == '__main__':
    PyPlot.plot(total_lengths, sort_times_bubble, 'b-',
                total_lengths, sort_times_ins, 'r-',
                total_lengths, sort_times_merge_r, 'g+',
                total_lengths, sort_times_merge_i, 'p-', )
    PyPlot.title("Combined Statistics")
    PyPlot.xlabel("Length of list (number)")
    PyPlot.ylabel("Time taken (seconds)")
    PyPlot.show()

正如你所看到的,这是一个非常基本的使用matplotlibPyPlot。理想情况下,生成如下图所示的图:

我知道没什么特别的。但是,尚不清楚在何处绘制哪些数据(我正在尝试绘制某些排序算法的数据,长度与所用时间的关系,并且我想确保人们知道哪条线是哪条)。因此,我需要一个图例,不过,请看下面的示例(来自官方网站):

ax = subplot(1,1,1)
p1, = ax.plot([1,2,3], label="line 1")
p2, = ax.plot([3,2,1], label="line 2")
p3, = ax.plot([2,3,1], label="line 3")

handles, labels = ax.get_legend_handles_labels()

# reverse the order
ax.legend(handles[::-1], labels[::-1])

# or sort them by labels
import operator
hl = sorted(zip(handles, labels),
            key=operator.itemgetter(1))
handles2, labels2 = zip(*hl)

ax.legend(handles2, labels2)

您将看到我需要创建一个额外的变量ax。如何在图例中添加图例不必创建此额外变量并保持当前脚本的简单性?

TL;DR -> How can one create a legend for a line graph in Matplotlib‘s PyPlot without creating any extra variables?

Please consider the graphing script below:

if __name__ == '__main__':
    PyPlot.plot(total_lengths, sort_times_bubble, 'b-',
                total_lengths, sort_times_ins, 'r-',
                total_lengths, sort_times_merge_r, 'g+',
                total_lengths, sort_times_merge_i, 'p-', )
    PyPlot.title("Combined Statistics")
    PyPlot.xlabel("Length of list (number)")
    PyPlot.ylabel("Time taken (seconds)")
    PyPlot.show()

As you can see, this is a very basic use of matplotlib‘s PyPlot. This ideally generates a graph like the one below:

Nothing special, I know. However, it is unclear what data is being plotted where (I’m trying to plot the data of some sorting algorithms, length against time taken, and I’d like to make sure people know which line is which). Thus, I need a legend, however, taking a look at the following example below(from the official site):

ax = subplot(1,1,1)
p1, = ax.plot([1,2,3], label="line 1")
p2, = ax.plot([3,2,1], label="line 2")
p3, = ax.plot([2,3,1], label="line 3")

handles, labels = ax.get_legend_handles_labels()

# reverse the order
ax.legend(handles[::-1], labels[::-1])

# or sort them by labels
import operator
hl = sorted(zip(handles, labels),
            key=operator.itemgetter(1))
handles2, labels2 = zip(*hl)

ax.legend(handles2, labels2)

You will see that I need to create an extra variable ax. How can I add a legend to my graph without having to create this extra variable and retaining the simplicity of my current script?


回答 0

label=在每个plot()呼叫中添加一个,然后呼叫legend(loc='upper left')

考虑以下示例(使用Python 3.8.0测试):

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 20, 1000)
y1 = np.sin(x)
y2 = np.cos(x)

plt.plot(x, y1, "-b", label="sine")
plt.plot(x, y2, "-r", label="cosine")
plt.legend(loc="upper left")
plt.ylim(-1.5, 2.0)
plt.show()

从本教程中略作修改:http : //jakevdp.github.io/mpl_tutorial/tutorial_pages/tut1.html

Add a label= to each of your plot() calls, and then call legend(loc='upper left').

Consider this sample (tested with Python 3.8.0):

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 20, 1000)
y1 = np.sin(x)
y2 = np.cos(x)

plt.plot(x, y1, "-b", label="sine")
plt.plot(x, y2, "-r", label="cosine")
plt.legend(loc="upper left")
plt.ylim(-1.5, 2.0)
plt.show()

Slightly modified from this tutorial: http://jakevdp.github.io/mpl_tutorial/tutorial_pages/tut1.html


回答 1

您可以使用访问Axes实例(axplt.gca()。在这种情况下,您可以使用

plt.gca().legend()

您可以通过label=在每个plt.plot()调用中使用关键字或通过将标签分配为元组或list中的列表来做到这一点legend,如本工作示例所示:

import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-0.75,1,100)
y0 = np.exp(2 + 3*x - 7*x**3)
y1 = 7-4*np.sin(4*x)
plt.plot(x,y0,x,y1)
plt.gca().legend(('y0','y1'))
plt.show()

但是,如果您需要多次访问Axes实例,建议您使用以下命令将其保存到变量ax中:

ax = plt.gca()

然后呼叫ax而不是plt.gca()

You can access the Axes instance (ax) with plt.gca(). In this case, you can use

plt.gca().legend()

You can do this either by using the label= keyword in each of your plt.plot() calls or by assigning your labels as a tuple or list within legend, as in this working example:

import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-0.75,1,100)
y0 = np.exp(2 + 3*x - 7*x**3)
y1 = 7-4*np.sin(4*x)
plt.plot(x,y0,x,y1)
plt.gca().legend(('y0','y1'))
plt.show()

However, if you need to access the Axes instance more that once, I do recommend saving it to the variable ax with

ax = plt.gca()

and then calling ax instead of plt.gca().


回答 2

这是一个帮助您的示例…

fig = plt.figure(figsize=(10,5))
ax = fig.add_subplot(111)
ax.set_title('ADR vs Rating (CS:GO)')
ax.scatter(x=data[:,0],y=data[:,1],label='Data')
plt.plot(data[:,0], m*data[:,0] + b,color='red',label='Our Fitting 
Line')
ax.set_xlabel('ADR')
ax.set_ylabel('Rating')
ax.legend(loc='best')
plt.show()

Here’s an example to help you out …

fig = plt.figure(figsize=(10,5))
ax = fig.add_subplot(111)
ax.set_title('ADR vs Rating (CS:GO)')
ax.scatter(x=data[:,0],y=data[:,1],label='Data')
plt.plot(data[:,0], m*data[:,0] + b,color='red',label='Our Fitting 
Line')
ax.set_xlabel('ADR')
ax.set_ylabel('Rating')
ax.legend(loc='best')
plt.show()


回答 3

一个带有图例的正弦和余弦曲线的简单图解。

用过的 matplotlib.pyplot

import math
import matplotlib.pyplot as plt
x=[]
for i in range(-314,314):
    x.append(i/100)
ysin=[math.sin(i) for i in x]
ycos=[math.cos(i) for i in x]
plt.plot(x,ysin,label='sin(x)')  #specify label for the corresponding curve
plt.plot(x,ycos,label='cos(x)')
plt.xticks([-3.14,-1.57,0,1.57,3.14],['-$\pi$','-$\pi$/2',0,'$\pi$/2','$\pi$'])
plt.legend()
plt.show()

A simple plot for sine and cosine curves with a legend.

Used matplotlib.pyplot

import math
import matplotlib.pyplot as plt
x=[]
for i in range(-314,314):
    x.append(i/100)
ysin=[math.sin(i) for i in x]
ycos=[math.cos(i) for i in x]
plt.plot(x,ysin,label='sin(x)')  #specify label for the corresponding curve
plt.plot(x,ycos,label='cos(x)')
plt.xticks([-3.14,-1.57,0,1.57,3.14],['-$\pi$','-$\pi$/2',0,'$\pi$/2','$\pi$'])
plt.legend()
plt.show()


回答 4

将标签添加到绘图调用中与绘图系列相对应的每个参数,即 label = "series 1"

然后只需将其添加Pyplot.legend()到脚本的底部,图例将显示这些标签。

Add labels to each argument in your plot call corresponding to the series it is graphing, i.e. label = "series 1"

Then simply add Pyplot.legend() to the bottom of your script and the legend will display these labels.


回答 5

您可以添加自定义图例文档

first = [1, 2, 4, 5, 4]
second = [3, 4, 2, 2, 3]
plt.plot(first,'g--', second, 'r--')
plt.legend(['First List','Second List'], loc='upper left')
plt.show()

You can add a custom legend documentation

first = [1, 2, 4, 5, 4]
second = [3, 4, 2, 2, 3]
plt.plot(first, 'g--', second, 'r--')
plt.legend(['First List', 'Second List'], loc='upper left')
plt.show()


回答 6

    # Dependencies
    import numpy as np
    import matplotlib.pyplot as plt

    #Set Axes
    # Set x axis to numerical value for month
    x_axis_data = np.arange(1,13,1)
    x_axis_data

    # Average weather temp
    points = [39, 42, 51, 62, 72, 82, 86, 84, 77, 65, 55, 44]

    # Plot the line
    plt.plot(x_axis_data, points)
    plt.show()

    # Convert to Celsius C = (F-32) * 0.56
    points_C = [round((x-32) * 0.56,2) for x in points]
    points_C

    # Plot using Celsius
    plt.plot(x_axis_data, points_C)
    plt.show()

    # Plot both on the same chart
    plt.plot(x_axis_data, points)
    plt.plot(x_axis_data, points_C)

    #Line colors
    plt.plot(x_axis_data, points, "-b", label="F")
    plt.plot(x_axis_data, points_C, "-r", label="C")

    #locate legend
    plt.legend(loc="upper left")
    plt.show()
    # Dependencies
    import numpy as np
    import matplotlib.pyplot as plt

    #Set Axes
    # Set x axis to numerical value for month
    x_axis_data = np.arange(1,13,1)
    x_axis_data

    # Average weather temp
    points = [39, 42, 51, 62, 72, 82, 86, 84, 77, 65, 55, 44]

    # Plot the line
    plt.plot(x_axis_data, points)
    plt.show()

    # Convert to Celsius C = (F-32) * 0.56
    points_C = [round((x-32) * 0.56,2) for x in points]
    points_C

    # Plot using Celsius
    plt.plot(x_axis_data, points_C)
    plt.show()

    # Plot both on the same chart
    plt.plot(x_axis_data, points)
    plt.plot(x_axis_data, points_C)

    #Line colors
    plt.plot(x_axis_data, points, "-b", label="F")
    plt.plot(x_axis_data, points_C, "-r", label="C")

    #locate legend
    plt.legend(loc="upper left")
    plt.show()