问题:使用“时间”模块测量经过时间

使用python中的时间模块,可以测量经过的时间吗?如果是这样,我该怎么做?

我需要这样做,以便如果光标在小部件中已存在一定时间,则会发生事件。

With the Time module in python is it possible to measure elapsed time? If so, how do I do that?

I need to do this so that if the cursor has been in a widget for a certain duration an event happens.


回答 0

start_time = time.time()
# your code
elapsed_time = time.time() - start_time

您还可以编写简单的装饰器来简化各种功能的执行时间的度量:

import time
from functools import wraps

PROF_DATA = {}

def profile(fn):
    @wraps(fn)
    def with_profiling(*args, **kwargs):
        start_time = time.time()

        ret = fn(*args, **kwargs)

        elapsed_time = time.time() - start_time

        if fn.__name__ not in PROF_DATA:
            PROF_DATA[fn.__name__] = [0, []]
        PROF_DATA[fn.__name__][0] += 1
        PROF_DATA[fn.__name__][1].append(elapsed_time)

        return ret

    return with_profiling

def print_prof_data():
    for fname, data in PROF_DATA.items():
        max_time = max(data[1])
        avg_time = sum(data[1]) / len(data[1])
        print "Function %s called %d times. " % (fname, data[0]),
        print 'Execution time max: %.3f, average: %.3f' % (max_time, avg_time)

def clear_prof_data():
    global PROF_DATA
    PROF_DATA = {}

用法:

@profile
def your_function(...):
    ...

您可以同时分析多个功能。然后要打印测量值,只需调用print_prof_data():

start_time = time.time()
# your code
elapsed_time = time.time() - start_time

You can also write simple decorator to simplify measurement of execution time of various functions:

import time
from functools import wraps

PROF_DATA = {}

def profile(fn):
    @wraps(fn)
    def with_profiling(*args, **kwargs):
        start_time = time.time()

        ret = fn(*args, **kwargs)

        elapsed_time = time.time() - start_time

        if fn.__name__ not in PROF_DATA:
            PROF_DATA[fn.__name__] = [0, []]
        PROF_DATA[fn.__name__][0] += 1
        PROF_DATA[fn.__name__][1].append(elapsed_time)

        return ret

    return with_profiling

def print_prof_data():
    for fname, data in PROF_DATA.items():
        max_time = max(data[1])
        avg_time = sum(data[1]) / len(data[1])
        print "Function %s called %d times. " % (fname, data[0]),
        print 'Execution time max: %.3f, average: %.3f' % (max_time, avg_time)

def clear_prof_data():
    global PROF_DATA
    PROF_DATA = {}

Usage:

@profile
def your_function(...):
    ...

You can profile more then one function simultaneously. Then to print measurements just call the print_prof_data():


回答 1

time.time() 会做的工作。

import time

start = time.time()
# run your code
end = time.time()

elapsed = end - start

您可能想看一下这个问题,但是我认为没有必要。

time.time() will do the job.

import time

start = time.time()
# run your code
end = time.time()

elapsed = end - start

You may want to look at this question, but I don’t think it will be necessary.


回答 2

对于想要更好格式的用户,

import time
start_time = time.time()
# your script
elapsed_time = time.time() - start_time
time.strftime("%H:%M:%S", time.gmtime(elapsed_time))

将打印出2秒钟:

'00:00:02'

一秒钟持续7分钟:

'00:07:01'

请注意,使用gmtime的最小时间单位是秒。如果需要微秒,请考虑以下事项:

import datetime
start = datetime.datetime.now()
# some code
end = datetime.datetime.now()
elapsed = end - start
print(elapsed)
# or
print(elapsed.seconds,":",elapsed.microseconds) 

strftime 文档

For users that want better formatting,

import time
start_time = time.time()
# your script
elapsed_time = time.time() - start_time
time.strftime("%H:%M:%S", time.gmtime(elapsed_time))

will print out, for 2 seconds:

'00:00:02'

and for 7 minutes one second:

'00:07:01'

note that the minimum time unit with gmtime is seconds. If you need microseconds consider the following:

import datetime
start = datetime.datetime.now()
# some code
end = datetime.datetime.now()
elapsed = end - start
print(elapsed)
# or
print(elapsed.seconds,":",elapsed.microseconds) 

strftime documentation


回答 3

为了获得最佳的经过时间度量(自Python 3.3起),请使用time.perf_counter()

返回性能计数器的值(以小数秒为单位),即具有最高可用分辨率的时钟以测量较短的持续时间。它确实包括整个系统的睡眠时间。返回值的参考点是不确定的,因此仅连续调用结果之间的差有效。

对于小时/天量级的测量,您不必担心亚秒级分辨率,请time.monotonic()改用。

返回单调时钟的值(以小数秒为单位),即不能向后移动的时钟。时钟不受系统时钟更新的影响。返回值的参考点是不确定的,因此仅连续调用结果之间的差有效。

在许多实现中,这些实际上可能是同一件事。

在3.3之前,您会受困于time.clock()

在Unix上,以秒为单位返回当前处理器时间,以浮点数表示。精度,实际上是“处理器时间”含义的确切定义,取决于同名C函数的精度。

在Windows上,此函数将基于Win32函数QueryPerformanceCounter()返回自第一次调用此函数以来经过的时间(以秒为单位)的浮点数。分辨率通常优于一微秒。


Python 3.7更新

PEP 564是Python 3.7中的新功能-添加具有纳秒分辨率的新时间函数。

使用这些可以进一步消除舍入和浮点错误,尤其是在测量周期很短或应用程序(或Windows计算机)正在长时间运行时。

perf_counter()大约100天后,分辨率开始下降。因此,例如,经过一年的正常运行时间后,它可以测量的最短间隔(大于0)将大于开始时的间隔。


Python 3.8更新

time.clock 现在不见了。

For the best measure of elapsed time (since Python 3.3), use time.perf_counter().

Return the value (in fractional seconds) of a performance counter, i.e. a clock with the highest available resolution to measure a short duration. It does include time elapsed during sleep and is system-wide. The reference point of the returned value is undefined, so that only the difference between the results of consecutive calls is valid.

For measurements on the order of hours/days, you don’t care about sub-second resolution so use time.monotonic() instead.

Return the value (in fractional seconds) of a monotonic clock, i.e. a clock that cannot go backwards. The clock is not affected by system clock updates. The reference point of the returned value is undefined, so that only the difference between the results of consecutive calls is valid.

In many implementations, these may actually be the same thing.

Before 3.3, you’re stuck with time.clock().

On Unix, return the current processor time as a floating point number expressed in seconds. The precision, and in fact the very definition of the meaning of “processor time”, depends on that of the C function of the same name.

On Windows, this function returns wall-clock seconds elapsed since the first call to this function, as a floating point number, based on the Win32 function QueryPerformanceCounter(). The resolution is typically better than one microsecond.


Update for Python 3.7

New in Python 3.7 is PEP 564 — Add new time functions with nanosecond resolution.

Use of these can further eliminate rounding and floating-point errors, especially if you’re measuring very short periods, or your application (or Windows machine) is long-running.

Resolution starts breaking down on perf_counter() after around 100 days. So for example after a year of uptime, the shortest interval (greater than 0) it can measure will be bigger than when it started.


Update for Python 3.8

time.clock is now gone.


回答 4

更长的时间。

import time
start_time = time.time()
...
e = int(time.time() - start_time)
print('{:02d}:{:02d}:{:02d}'.format(e // 3600, (e % 3600 // 60), e % 60))

会打印

00:03:15

如果超过24小时

25:33:57

这是受到罗格·霍夫斯特(Rutger Hofste)的回答的启发。谢谢罗格!

For a longer period.

import time
start_time = time.time()
...
e = int(time.time() - start_time)
print('{:02d}:{:02d}:{:02d}'.format(e // 3600, (e % 3600 // 60), e % 60))

would print

00:03:15

if more than 24 hours

25:33:57

That is inspired by Rutger Hofste’s answer. Thank you Rutger!


回答 5

您需要导入时间,然后使用time.time()方法知道当前时间。

import time

start_time=time.time() #taking current time as starting time

#here your code

elapsed_time=time.time()-start_time #again taking current time - starting time 

You need to import time and then use time.time() method to know current time.

import time

start_time=time.time() #taking current time as starting time

#here your code

elapsed_time=time.time()-start_time #again taking current time - starting time 

回答 6

安排时间的另一种不错的方法是使用with python结构。

具有结构的对象会自动调用__enter____exit__方法,这正是我们计时所需的时间。

让我们创建一个Timer类。

from time import time

class Timer():
    def __init__(self, message):
        self.message = message
    def __enter__(self):
        self.start = time()
        return None  # could return anything, to be used like this: with Timer("Message") as value:
    def __exit__(self, type, value, traceback):
        elapsed_time = (time() - self.start) * 1000
        print(self.message.format(elapsed_time))

然后,可以使用Timer类,如下所示:

with Timer("Elapsed time to compute some prime numbers: {}ms"):
    primes = []
    for x in range(2, 500):
        if not any(x % p == 0 for p in primes):
            primes.append(x)
    print("Primes: {}".format(primes))

结果如下:

素数:[2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89 ,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227 ,229、233、239、241、251、257、263、269、271、277、281、283、293、307、311、313、317、331、337、347、349、353、359、367、373 ,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499]

计算一些质数所需的时间:5.01704216003418ms

Another nice way to time things is to use the with python structure.

with structure is automatically calling __enter__ and __exit__ methods which is exactly what we need to time things.

Let’s create a Timer class.

from time import time

class Timer():
    def __init__(self, message):
        self.message = message
    def __enter__(self):
        self.start = time()
        return None  # could return anything, to be used like this: with Timer("Message") as value:
    def __exit__(self, type, value, traceback):
        elapsed_time = (time() - self.start) * 1000
        print(self.message.format(elapsed_time))

Then, one can use the Timer class like this:

with Timer("Elapsed time to compute some prime numbers: {}ms"):
    primes = []
    for x in range(2, 500):
        if not any(x % p == 0 for p in primes):
            primes.append(x)
    print("Primes: {}".format(primes))

The result is the following:

Primes: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499]

Elapsed time to compute some prime numbers: 5.01704216003418ms


回答 7

Vadim Shender的反应很棒。您还可以使用以下更简单的装饰器:

import datetime
def calc_timing(original_function):                            
    def new_function(*args,**kwargs):                        
        start = datetime.datetime.now()                     
        x = original_function(*args,**kwargs)                
        elapsed = datetime.datetime.now()                      
        print("Elapsed Time = {0}".format(elapsed-start))     
        return x                                             
    return new_function()  

@calc_timing
def a_func(*variables):
    print("do something big!")

Vadim Shender response is great. You can also use a simpler decorator like below:

import datetime
def calc_timing(original_function):                            
    def new_function(*args,**kwargs):                        
        start = datetime.datetime.now()                     
        x = original_function(*args,**kwargs)                
        elapsed = datetime.datetime.now()                      
        print("Elapsed Time = {0}".format(elapsed-start))     
        return x                                             
    return new_function()  

@calc_timing
def a_func(*variables):
    print("do something big!")

回答 8

在编程中,有两种主要的时间测量方法,结果不同:

>>> print(time.process_time()); time.sleep(10); print(time.process_time())
0.11751394000000001
0.11764988400000001  # took  0 seconds and a bit
>>> print(time.perf_counter()); time.sleep(10); print(time.perf_counter())
3972.465770326
3982.468109075       # took 10 seconds and a bit
  • 处理器时间:这是该特定进程在CPU上主动执行所花费的时间。睡眠,等待Web请求或仅执行其他进程的时间不会对此有所帮助。

    • 采用 time.process_time()
  • 墙上时钟时间:这指的是“挂在墙上的时钟上”经过了多少时间,即不是实时时间。

    • 采用 time.perf_counter()

      • time.time() 还可以测量挂钟时间,但可以重置,因此您可以返回到过去
      • time.monotonic() 无法重置(单调=仅前进),但精度低于 time.perf_counter()

In programming, there are 2 main ways to measure time, with different results:

>>> print(time.process_time()); time.sleep(10); print(time.process_time())
0.11751394000000001
0.11764988400000001  # took  0 seconds and a bit
>>> print(time.perf_counter()); time.sleep(10); print(time.perf_counter())
3972.465770326
3982.468109075       # took 10 seconds and a bit
  • Processor Time: This is how long this specific process spends actively being executed on the CPU. Sleep, waiting for a web request, or time when only other processes are executed will not contribute to this.

    • Use time.process_time()
  • Wall-Clock Time: This refers to how much time has passed “on a clock hanging on the wall”, i.e. outside real time.

    • Use time.perf_counter()

      • time.time() also measures wall-clock time but can be reset, so you could go back in time
      • time.monotonic() cannot be reset (monotonic = only goes forward) but has lower precision than time.perf_counter()

回答 9

这是Vadim Shender的巧妙代码的更新,带有表格输出:

import collections
import time
from functools import wraps

PROF_DATA = collections.defaultdict(list)

def profile(fn):
    @wraps(fn)
    def with_profiling(*args, **kwargs):
        start_time = time.time()
        ret = fn(*args, **kwargs)
        elapsed_time = time.time() - start_time
        PROF_DATA[fn.__name__].append(elapsed_time)
        return ret
    return with_profiling

Metrics = collections.namedtuple("Metrics", "sum_time num_calls min_time max_time avg_time fname")

def print_profile_data():
    results = []
    for fname, elapsed_times in PROF_DATA.items():
        num_calls = len(elapsed_times)
        min_time = min(elapsed_times)
        max_time = max(elapsed_times)
        sum_time = sum(elapsed_times)
        avg_time = sum_time / num_calls
        metrics = Metrics(sum_time, num_calls, min_time, max_time, avg_time, fname)
        results.append(metrics)
    total_time = sum([m.sum_time for m in results])
    print("\t".join(["Percent", "Sum", "Calls", "Min", "Max", "Mean", "Function"]))
    for m in sorted(results, reverse=True):
        print("%.1f\t%.3f\t%d\t%.3f\t%.3f\t%.3f\t%s" % (100 * m.sum_time / total_time, m.sum_time, m.num_calls, m.min_time, m.max_time, m.avg_time, m.fname))
    print("%.3f Total Time" % total_time)

Here is an update to Vadim Shender’s clever code with tabular output:

import collections
import time
from functools import wraps

PROF_DATA = collections.defaultdict(list)

def profile(fn):
    @wraps(fn)
    def with_profiling(*args, **kwargs):
        start_time = time.time()
        ret = fn(*args, **kwargs)
        elapsed_time = time.time() - start_time
        PROF_DATA[fn.__name__].append(elapsed_time)
        return ret
    return with_profiling

Metrics = collections.namedtuple("Metrics", "sum_time num_calls min_time max_time avg_time fname")

def print_profile_data():
    results = []
    for fname, elapsed_times in PROF_DATA.items():
        num_calls = len(elapsed_times)
        min_time = min(elapsed_times)
        max_time = max(elapsed_times)
        sum_time = sum(elapsed_times)
        avg_time = sum_time / num_calls
        metrics = Metrics(sum_time, num_calls, min_time, max_time, avg_time, fname)
        results.append(metrics)
    total_time = sum([m.sum_time for m in results])
    print("\t".join(["Percent", "Sum", "Calls", "Min", "Max", "Mean", "Function"]))
    for m in sorted(results, reverse=True):
        print("%.1f\t%.3f\t%d\t%.3f\t%.3f\t%.3f\t%s" % (100 * m.sum_time / total_time, m.sum_time, m.num_calls, m.min_time, m.max_time, m.avg_time, m.fname))
    print("%.3f Total Time" % total_time)

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。