问题:在日期上过滤熊猫数据框
我有一个带有“日期”列的Pandas DataFrame。现在,我需要过滤掉DataFrame中日期在接下来两个月之外的所有行。本质上,我只需要保留接下来两个月内的行。
实现此目标的最佳方法是什么?
I have a Pandas DataFrame with a ‘date’ column. Now I need to filter out all rows in the DataFrame that have dates outside of the next two months. Essentially, I only need to retain the rows that are within the next two months.
What is the best way to achieve this?
回答 0
If date column is the index, then use .loc for label based indexing or .iloc for positional indexing.
For example:
df.loc['2014-01-01':'2014-02-01']
See details here http://pandas.pydata.org/pandas-docs/stable/dsintro.html#indexing-selection
If the column is not the index you have two choices:
- Make it the index (either temporarily or permanently if it’s time-series data)
df[(df['date'] > '2013-01-01') & (df['date'] < '2013-02-01')]
See here for the general explanation
Note: .ix is deprecated.
回答 1
根据我的经验,上一个答案是不正确的,您不能将其传递为简单的字符串,而必须是datetime对象。所以:
import datetime
df.loc[datetime.date(year=2014,month=1,day=1):datetime.date(year=2014,month=2,day=1)]
Previous answer is not correct in my experience, you can’t pass it a simple string, needs to be a datetime object. So:
import datetime
df.loc[datetime.date(year=2014,month=1,day=1):datetime.date(year=2014,month=2,day=1)]
回答 2
而且,如果通过导入datetime包将日期标准化,则可以简单地使用:
df[(df['date']>datetime.date(2016,1,1)) & (df['date']<datetime.date(2016,3,1))]
为了使用datetime包标准化日期字符串,可以使用以下功能:
import datetime
datetime.datetime.strptime
And if your dates are standardized by importing datetime package, you can simply use:
df[(df['date']>datetime.date(2016,1,1)) & (df['date']<datetime.date(2016,3,1))]
For standarding your date string using datetime package, you can use this function:
import datetime
datetime.datetime.strptime
回答 3
如果您的datetime列具有Pandas datetime类型(例如datetime64[ns]
),则为了进行正确的过滤,您需要pd.Timestamp对象,例如:
from datetime import date
import pandas as pd
value_to_check = pd.Timestamp(date.today().year, 1, 1)
filter_mask = df['date_column'] < value_to_check
filtered_df = df[filter_mask]
If your datetime column have the Pandas datetime type (e.g. datetime64[ns]
), for proper filtering you need the pd.Timestamp object, for example:
from datetime import date
import pandas as pd
value_to_check = pd.Timestamp(date.today().year, 1, 1)
filter_mask = df['date_column'] < value_to_check
filtered_df = df[filter_mask]
回答 4
如果日期在索引中,则只需:
df['20160101':'20160301']
If the dates are in the index then simply:
df['20160101':'20160301']
回答 5
您可以使用pd.Timestamp执行查询和本地引用
import pandas as pd
import numpy as np
df = pd.DataFrame()
ts = pd.Timestamp
df['date'] = np.array(np.arange(10) + datetime.now().timestamp(), dtype='M8[s]')
print(df)
print(df.query('date > @ts("20190515T071320")')
与输出
date
0 2019-05-15 07:13:16
1 2019-05-15 07:13:17
2 2019-05-15 07:13:18
3 2019-05-15 07:13:19
4 2019-05-15 07:13:20
5 2019-05-15 07:13:21
6 2019-05-15 07:13:22
7 2019-05-15 07:13:23
8 2019-05-15 07:13:24
9 2019-05-15 07:13:25
date
5 2019-05-15 07:13:21
6 2019-05-15 07:13:22
7 2019-05-15 07:13:23
8 2019-05-15 07:13:24
9 2019-05-15 07:13:25
看一下DataFrame.query的pandas文档,特别是有关本地变量引用的udsing @
前缀的提及。在这种情况下,我们pd.Timestamp
使用本地别名ts
进行引用,以便能够提供时间戳字符串
You can use pd.Timestamp to perform a query and a local reference
import pandas as pd
import numpy as np
df = pd.DataFrame()
ts = pd.Timestamp
df['date'] = np.array(np.arange(10) + datetime.now().timestamp(), dtype='M8[s]')
print(df)
print(df.query('date > @ts("20190515T071320")')
with the output
date
0 2019-05-15 07:13:16
1 2019-05-15 07:13:17
2 2019-05-15 07:13:18
3 2019-05-15 07:13:19
4 2019-05-15 07:13:20
5 2019-05-15 07:13:21
6 2019-05-15 07:13:22
7 2019-05-15 07:13:23
8 2019-05-15 07:13:24
9 2019-05-15 07:13:25
date
5 2019-05-15 07:13:21
6 2019-05-15 07:13:22
7 2019-05-15 07:13:23
8 2019-05-15 07:13:24
9 2019-05-15 07:13:25
Have a look at the pandas documentation for DataFrame.query, specifically the mention about the local variabile referenced udsing @
prefix. In this case we reference pd.Timestamp
using the local alias ts
to be able to supply a timestamp string
回答 6
因此,在加载csv数据文件时,我们需要如下所示将date列设置为索引,以便根据日期范围过滤数据。现在不推荐使用的方法:pd.DataFrame.from_csv()不需要此功能。
如果您只想显示一月至二月两个月的数据,例如2020-01-01至2020-02-29,则可以执行以下操作:
import pandas as pd
mydata = pd.read_csv('mydata.csv',index_col='date') # or its index number, e.g. index_col=[0]
mydata['2020-01-01':'2020-02-29'] # will pull all the columns
#if just need one column, e.g. Cost, can be done:
mydata['2020-01-01':'2020-02-29','Cost']
已针对Python 3.7进行了测试。希望您会发现这个有用。
So when loading the csv data file, we’ll need to set the date column as index now as below, in order to filter data based on a range of dates. This was not needed for the now deprecated method: pd.DataFrame.from_csv().
If you just want to show the data for two months from Jan to Feb, e.g. 2020-01-01 to 2020-02-29, you can do so:
import pandas as pd
mydata = pd.read_csv('mydata.csv',index_col='date') # or its index number, e.g. index_col=[0]
mydata['2020-01-01':'2020-02-29'] # will pull all the columns
#if just need one column, e.g. Cost, can be done:
mydata['2020-01-01':'2020-02-29','Cost']
This has been tested working for Python 3.7. Hope you will find this useful.
回答 7
怎么样使用 pyjanitor
它具有很酷的功能。
后 pip install pyjanitor
import janitor
df_filtered = df.filter_date(your_date_column_name, start_date, end_date)
How about using pyjanitor
It has cool features.
After pip install pyjanitor
import janitor
df_filtered = df.filter_date(your_date_column_name, start_date, end_date)
回答 8
按日期过滤数据框的最短方法:假设您的日期列为datetime64 [ns]类型
# filter by single day
df = df[df['date'].dt.strftime('%Y-%m-%d') == '2014-01-01']
# filter by single month
df = df[df['date'].dt.strftime('%Y-%m') == '2014-01']
# filter by single year
df = df[df['date'].dt.strftime('%Y') == '2014']
The shortest way to filter your dataframe by date: Lets suppose your date column is type of datetime64[ns]
# filter by single day
df = df[df['date'].dt.strftime('%Y-%m-%d') == '2014-01-01']
# filter by single month
df = df[df['date'].dt.strftime('%Y-%m') == '2014-01']
# filter by single year
df = df[df['date'].dt.strftime('%Y') == '2014']
回答 9
我尚未被允许发表任何评论,所以如果有人可以阅读所有评论并达到目的,我将写一个答案。
如果数据集的索引是日期时间,并且您只想按(例如)个月筛选,则可以执行以下操作:
df.loc[df.index.month = 3]
这将在三月之前为您过滤数据集。
I’m not allowed to write any comments yet, so I’ll write an answer, if somebody will read all of them and reach this one.
If the index of the dataset is a datetime and you want to filter that just by (for example) months, you can do following:
df.loc[df.index.month = 3]
That will filter the dataset for you by March.
回答 10
您可以通过执行以下操作来选择时间范围:df.loc [‘start_date’:’end_date’]
You could just select the time range by doing: df.loc[‘start_date’:’end_date’]
回答 11
如果您已经使用pd.to_datetime将字符串转换为日期格式,则可以使用:
df = df[(df['Date']> "2018-01-01") & (df['Date']< "2019-07-01")]
If you have already converted the string to a date format using pd.to_datetime you can just use:
df = df[(df['Date']> "2018-01-01") & (df['Date']< "2019-07-01")]
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。