问题:在matplotlib中动态更新图

我正在用Python开发一个应用程序,该应用程序从串行端口收集数据并针对到达时间绘制收集的数据图。数据的到达时间不确定。我希望在收到数据时更新绘图。我搜索了如何执行此操作,发现了两种方法:

  1. 清除绘图,然后重新绘制所有点的绘图。
  2. 通过在特定间隔后对其进行更改来对图进行动画处理。

我不喜欢第一个程序,因为该程序会运行很长时间(例如一天),并且会收集数据,因此重绘该图将非常慢。第二种方法也不可取,因为数据的到达时间不确定,我希望仅在接收到数据时更新绘图。

有没有一种方法可以仅在收到数据后才通过添加更多点来更新图?

I am making an application in Python which collects data from a serial port and plots a graph of the collected data against arrival time. The time of arrival for the data is uncertain. I want the plot to be updated when data is received. I searched on how to do this and found two methods:

  1. Clear the plot and re-draw the plot with all the points again.
  2. Animate the plot by changing it after a particular interval.

I do not prefer the first one as the program runs and collects data for a long time (a day for example), and redrawing the plot will be pretty slow. The second one is also not preferable as time of arrival of data is uncertain and I want the plot to update only when the data is received.

Is there a way in which I can update the plot just by adding more points to it only when the data is received?


回答 0

有没有一种方法可以通过添加更多点来更新图…

matplotlib中有多种动画数据的方式,具体取决于您使用的版本。您看过matplotlib食谱示例吗?另外,请在matplotlib文档中查看更现代的动画示例。最后,动画API定义了一个函数FuncAnimation,该函数可以对一个函数进行实时动画处理。该功能可能只是您用来获取数据的功能。

每种方法基本上都设置了data要绘制的对象的属性,因此不需要清除屏幕或图形。data可以简单地扩展该属性,因此您可以保留先前的点,而只需继续添加到线(或图像或所绘制的任何东西)中。

假设您说数据到达时间不确定,那么最好的选择就是执行以下操作:

import matplotlib.pyplot as plt
import numpy

hl, = plt.plot([], [])

def update_line(hl, new_data):
    hl.set_xdata(numpy.append(hl.get_xdata(), new_data))
    hl.set_ydata(numpy.append(hl.get_ydata(), new_data))
    plt.draw()

然后,当您从串行端口接收数据时,只需调用update_line

Is there a way in which I can update the plot just by adding more point[s] to it…

There are a number of ways of animating data in matplotlib, depending on the version you have. Have you seen the matplotlib cookbook examples? Also, check out the more modern animation examples in the matplotlib documentation. Finally, the animation API defines a function FuncAnimation which animates a function in time. This function could just be the function you use to acquire your data.

Each method basically sets the data property of the object being drawn, so doesn’t require clearing the screen or figure. The data property can simply be extended, so you can keep the previous points and just keep adding to your line (or image or whatever you are drawing).

Given that you say that your data arrival time is uncertain your best bet is probably just to do something like:

import matplotlib.pyplot as plt
import numpy

hl, = plt.plot([], [])

def update_line(hl, new_data):
    hl.set_xdata(numpy.append(hl.get_xdata(), new_data))
    hl.set_ydata(numpy.append(hl.get_ydata(), new_data))
    plt.draw()

Then when you receive data from the serial port just call update_line.


回答 1

为了在不使用FuncAnimation的情况下执行此操作(例如,要在生成图时执行代码的其他部分,或者要同时更新多个图),draw单独调用不会生成图(至少使用qt后端)。

以下对我有用:

import matplotlib.pyplot as plt
plt.ion()
class DynamicUpdate():
    #Suppose we know the x range
    min_x = 0
    max_x = 10

    def on_launch(self):
        #Set up plot
        self.figure, self.ax = plt.subplots()
        self.lines, = self.ax.plot([],[], 'o')
        #Autoscale on unknown axis and known lims on the other
        self.ax.set_autoscaley_on(True)
        self.ax.set_xlim(self.min_x, self.max_x)
        #Other stuff
        self.ax.grid()
        ...

    def on_running(self, xdata, ydata):
        #Update data (with the new _and_ the old points)
        self.lines.set_xdata(xdata)
        self.lines.set_ydata(ydata)
        #Need both of these in order to rescale
        self.ax.relim()
        self.ax.autoscale_view()
        #We need to draw *and* flush
        self.figure.canvas.draw()
        self.figure.canvas.flush_events()

    #Example
    def __call__(self):
        import numpy as np
        import time
        self.on_launch()
        xdata = []
        ydata = []
        for x in np.arange(0,10,0.5):
            xdata.append(x)
            ydata.append(np.exp(-x**2)+10*np.exp(-(x-7)**2))
            self.on_running(xdata, ydata)
            time.sleep(1)
        return xdata, ydata

d = DynamicUpdate()
d()

In order to do this without FuncAnimation (eg you want to execute other parts of the code while the plot is being produced or you want to be updating several plots at the same time), calling draw alone does not produce the plot (at least with the qt backend).

The following works for me:

import matplotlib.pyplot as plt
plt.ion()
class DynamicUpdate():
    #Suppose we know the x range
    min_x = 0
    max_x = 10

    def on_launch(self):
        #Set up plot
        self.figure, self.ax = plt.subplots()
        self.lines, = self.ax.plot([],[], 'o')
        #Autoscale on unknown axis and known lims on the other
        self.ax.set_autoscaley_on(True)
        self.ax.set_xlim(self.min_x, self.max_x)
        #Other stuff
        self.ax.grid()
        ...

    def on_running(self, xdata, ydata):
        #Update data (with the new _and_ the old points)
        self.lines.set_xdata(xdata)
        self.lines.set_ydata(ydata)
        #Need both of these in order to rescale
        self.ax.relim()
        self.ax.autoscale_view()
        #We need to draw *and* flush
        self.figure.canvas.draw()
        self.figure.canvas.flush_events()

    #Example
    def __call__(self):
        import numpy as np
        import time
        self.on_launch()
        xdata = []
        ydata = []
        for x in np.arange(0,10,0.5):
            xdata.append(x)
            ydata.append(np.exp(-x**2)+10*np.exp(-(x-7)**2))
            self.on_running(xdata, ydata)
            time.sleep(1)
        return xdata, ydata

d = DynamicUpdate()
d()

回答 2

这是一种允许在绘制一定数量的点之后删除点的方法:

import matplotlib.pyplot as plt
# generate axes object
ax = plt.axes()

# set limits
plt.xlim(0,10) 
plt.ylim(0,10)

for i in range(10):        
     # add something to axes    
     ax.scatter([i], [i]) 
     ax.plot([i], [i+1], 'rx')

     # draw the plot
     plt.draw() 
     plt.pause(0.01) #is necessary for the plot to update for some reason

     # start removing points if you don't want all shown
     if i>2:
         ax.lines[0].remove()
         ax.collections[0].remove()

Here is a way which allows to remove points after a certain number of points plotted:

import matplotlib.pyplot as plt
# generate axes object
ax = plt.axes()

# set limits
plt.xlim(0,10) 
plt.ylim(0,10)

for i in range(10):        
     # add something to axes    
     ax.scatter([i], [i]) 
     ax.plot([i], [i+1], 'rx')

     # draw the plot
     plt.draw() 
     plt.pause(0.01) #is necessary for the plot to update for some reason

     # start removing points if you don't want all shown
     if i>2:
         ax.lines[0].remove()
         ax.collections[0].remove()

回答 3

我知道我来不及回答这个问题,但是对于您的问题,您可以考虑使用“操纵杆”包装。我设计它用于从串行端口绘制数据流,但它适用于任何流。它还允许交互式文本记录或图像绘图(除了图形绘图外)。无需在单独的线程中执行自己的循环,程序包会照顾它,只需提供您希望的更新频率即可。另外,终端在绘制时仍可用于监视命令。参见http://www.github.com/ceyzeriat/joystick/https://pypi.python.org/pypi/joystick(使用pip install游戏杆进行安装)

只需将np.random.random()替换为您从以下代码中从串行端口读取的实际数据点:

import joystick as jk
import numpy as np
import time

class test(jk.Joystick):
    # initialize the infinite loop decorator
    _infinite_loop = jk.deco_infinite_loop()

    def _init(self, *args, **kwargs):
        """
        Function called at initialization, see the doc
        """
        self._t0 = time.time()  # initialize time
        self.xdata = np.array([self._t0])  # time x-axis
        self.ydata = np.array([0.0])  # fake data y-axis
        # create a graph frame
        self.mygraph = self.add_frame(jk.Graph(name="test", size=(500, 500), pos=(50, 50), fmt="go-", xnpts=10000, xnptsmax=10000, xylim=(None, None, 0, 1)))

    @_infinite_loop(wait_time=0.2)
    def _generate_data(self):  # function looped every 0.2 second to read or produce data
        """
        Loop starting with the simulation start, getting data and
    pushing it to the graph every 0.2 seconds
        """
        # concatenate data on the time x-axis
        self.xdata = jk.core.add_datapoint(self.xdata, time.time(), xnptsmax=self.mygraph.xnptsmax)
        # concatenate data on the fake data y-axis
        self.ydata = jk.core.add_datapoint(self.ydata, np.random.random(), xnptsmax=self.mygraph.xnptsmax)
        self.mygraph.set_xydata(t, self.ydata)

t = test()
t.start()
t.stop()

I know I’m late to answer this question, but for your issue you could look into the “joystick” package. I designed it for plotting a stream of data from the serial port, but it works for any stream. It also allows for interactive text logging or image plotting (in addition to graph plotting). No need to do your own loops in a separate thread, the package takes care of it, just give the update frequency you wish. Plus the terminal remains available for monitoring commands while plotting. See http://www.github.com/ceyzeriat/joystick/ or https://pypi.python.org/pypi/joystick (use pip install joystick to install)

Just replace np.random.random() by your real data point read from the serial port in the code below:

import joystick as jk
import numpy as np
import time

class test(jk.Joystick):
    # initialize the infinite loop decorator
    _infinite_loop = jk.deco_infinite_loop()

    def _init(self, *args, **kwargs):
        """
        Function called at initialization, see the doc
        """
        self._t0 = time.time()  # initialize time
        self.xdata = np.array([self._t0])  # time x-axis
        self.ydata = np.array([0.0])  # fake data y-axis
        # create a graph frame
        self.mygraph = self.add_frame(jk.Graph(name="test", size=(500, 500), pos=(50, 50), fmt="go-", xnpts=10000, xnptsmax=10000, xylim=(None, None, 0, 1)))

    @_infinite_loop(wait_time=0.2)
    def _generate_data(self):  # function looped every 0.2 second to read or produce data
        """
        Loop starting with the simulation start, getting data and
    pushing it to the graph every 0.2 seconds
        """
        # concatenate data on the time x-axis
        self.xdata = jk.core.add_datapoint(self.xdata, time.time(), xnptsmax=self.mygraph.xnptsmax)
        # concatenate data on the fake data y-axis
        self.ydata = jk.core.add_datapoint(self.ydata, np.random.random(), xnptsmax=self.mygraph.xnptsmax)
        self.mygraph.set_xydata(t, self.ydata)

t = test()
t.start()
t.stop()

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。