在Python中查找列表的中位数

问题:在Python中查找列表的中位数

您如何在Python中找到列表的中位数?该列表可以是任何大小,并且不能保证数字以任何特定顺序排列。

如果列表包含偶数个元素,则该函数应返回中间两个元素的平均值。

以下是一些示例(排序用于显示目的):

median([1]) == 1
median([1, 1]) == 1
median([1, 1, 2, 4]) == 1.5
median([0, 2, 5, 6, 8, 9, 9]) == 6
median([0, 0, 0, 0, 4, 4, 6, 8]) == 2

How do you find the median of a list in Python? The list can be of any size and the numbers are not guaranteed to be in any particular order.

If the list contains an even number of elements, the function should return the average of the middle two.

Here are some examples (sorted for display purposes):

median([1]) == 1
median([1, 1]) == 1
median([1, 1, 2, 4]) == 1.5
median([0, 2, 5, 6, 8, 9, 9]) == 6
median([0, 0, 0, 0, 4, 4, 6, 8]) == 2

回答 0

Python 3.4具有statistics.median

返回数值数据的中位数(中间值)。

当数据点数为奇数时,返回中间数据点。当数据点的数量为偶数时,通过取两个中间值的平均值来对中位数进行插值:

>>> median([1, 3, 5])
3
>>> median([1, 3, 5, 7])
4.0

用法:

import statistics

items = [6, 1, 8, 2, 3]

statistics.median(items)
#>>> 3

类型也非常小心:

statistics.median(map(float, items))
#>>> 3.0

from decimal import Decimal
statistics.median(map(Decimal, items))
#>>> Decimal('3')

Python 3.4 has statistics.median:

Return the median (middle value) of numeric data.

When the number of data points is odd, return the middle data point. When the number of data points is even, the median is interpolated by taking the average of the two middle values:

>>> median([1, 3, 5])
3
>>> median([1, 3, 5, 7])
4.0

Usage:

import statistics

items = [6, 1, 8, 2, 3]

statistics.median(items)
#>>> 3

It’s pretty careful with types, too:

statistics.median(map(float, items))
#>>> 3.0

from decimal import Decimal
statistics.median(map(Decimal, items))
#>>> Decimal('3')

回答 1

(与 ):

def median(lst):
    n = len(lst)
    s = sorted(lst)
    return (sum(s[n//2-1:n//2+1])/2.0, s[n//2])[n % 2] if n else None

>>> median([-5, -5, -3, -4, 0, -1])
-3.5

numpy.median()

>>> from numpy import median
>>> median([1, -4, -1, -1, 1, -3])
-1.0

对于 ,使用statistics.median

>>> from statistics import median
>>> median([5, 2, 3, 8, 9, -2])
4.0

(Works with ):

def median(lst):
    n = len(lst)
    s = sorted(lst)
    return (sum(s[n//2-1:n//2+1])/2.0, s[n//2])[n % 2] if n else None

>>> median([-5, -5, -3, -4, 0, -1])
-3.5

numpy.median():

>>> from numpy import median
>>> median([1, -4, -1, -1, 1, -3])
-1.0

For , use statistics.median:

>>> from statistics import median
>>> median([5, 2, 3, 8, 9, -2])
4.0

回答 2

sorted()函数对此很有帮助。使用排序功能对列表进行排序,然后简单地返回中间值(如果列表包含偶数个元素,则对两个中间值求平均值)。

def median(lst):
    sortedLst = sorted(lst)
    lstLen = len(lst)
    index = (lstLen - 1) // 2

    if (lstLen % 2):
        return sortedLst[index]
    else:
        return (sortedLst[index] + sortedLst[index + 1])/2.0

The sorted() function is very helpful for this. Use the sorted function to order the list, then simply return the middle value (or average the two middle values if the list contains an even amount of elements).

def median(lst):
    sortedLst = sorted(lst)
    lstLen = len(lst)
    index = (lstLen - 1) // 2
   
    if (lstLen % 2):
        return sortedLst[index]
    else:
        return (sortedLst[index] + sortedLst[index + 1])/2.0

回答 3

这是一个更清洁的解决方案:

def median(lst):
    quotient, remainder = divmod(len(lst), 2)
    if remainder:
        return sorted(lst)[quotient]
    return sum(sorted(lst)[quotient - 1:quotient + 1]) / 2.

注意:答案已更改为将建议纳入注释中。

Here’s a cleaner solution:

def median(lst):
    quotient, remainder = divmod(len(lst), 2)
    if remainder:
        return sorted(lst)[quotient]
    return sum(sorted(lst)[quotient - 1:quotient + 1]) / 2.

Note: Answer changed to incorporate suggestion in comments.


回答 4

如果需要更快的平均情况运行时间,则可以尝试使用quickselect算法。O(n)尽管Quickselect 可能会O(n²)遇到糟糕的一天,但它具有平均(和最佳)的案例性能。

这是一个随机选择的实现的实现:

import random

def select_nth(n, items):
    pivot = random.choice(items)

    lesser = [item for item in items if item < pivot]
    if len(lesser) > n:
        return select_nth(n, lesser)
    n -= len(lesser)

    numequal = items.count(pivot)
    if numequal > n:
        return pivot
    n -= numequal

    greater = [item for item in items if item > pivot]
    return select_nth(n, greater)

您可以简单地将其转换为查找中位数的方法:

def median(items):
    if len(items) % 2:
        return select_nth(len(items)//2, items)

    else:
        left  = select_nth((len(items)-1) // 2, items)
        right = select_nth((len(items)+1) // 2, items)

        return (left + right) / 2

这是非常未经优化的,但即使是经过优化的版本也不太可能胜过Tim Sort(CPython的内置功能sort),因为这确实非常快。我以前尝试过,但输了。

You can try the quickselect algorithm if faster average-case running times are needed. Quickselect has average (and best) case performance O(n), although it can end up O(n²) on a bad day.

Here’s an implementation with a randomly chosen pivot:

import random

def select_nth(n, items):
    pivot = random.choice(items)

    lesser = [item for item in items if item < pivot]
    if len(lesser) > n:
        return select_nth(n, lesser)
    n -= len(lesser)

    numequal = items.count(pivot)
    if numequal > n:
        return pivot
    n -= numequal

    greater = [item for item in items if item > pivot]
    return select_nth(n, greater)

You can trivially turn this into a method to find medians:

def median(items):
    if len(items) % 2:
        return select_nth(len(items)//2, items)

    else:
        left  = select_nth((len(items)-1) // 2, items)
        right = select_nth((len(items)+1) // 2, items)

        return (left + right) / 2

This is very unoptimised, but it’s not likely that even an optimised version will outperform Tim Sort (CPython’s built-in sort) because that’s really fast. I’ve tried before and I lost.


回答 5

当然,您可以使用内置函数,但是如果您想创建自己的函数,则可以执行以下操作。这里的技巧是使用〜运算符将正数翻转为负数。例如〜2-> -3,并且在Python中对列表使用负数将从末尾开始计数。因此,如果您的mid == 2,则它将从开始处获取第三个元素,而从结尾处获取第三个元素。

def median(data):
    data.sort()
    mid = len(data) // 2
    return (data[mid] + data[~mid]) / 2

Of course you can use build in functions, but if you would like to create your own you can do something like this. The trick here is to use ~ operator that flip positive number to negative. For instance ~2 -> -3 and using negative in for list in Python will count items from the end. So if you have mid == 2 then it will take third element from beginning and third item from the end.

def median(data):
    data.sort()
    mid = len(data) // 2
    return (data[mid] + data[~mid]) / 2

回答 6

您可以使用list.sort来避免使用创建新列表sorted并在适当位置对列表进行排序。

另外,您不应使用它list作为变量名,因为它会遮盖python自己的list

def median(l):
    half = len(l) // 2
    l.sort()
    if not len(l) % 2:
        return (l[half - 1] + l[half]) / 2.0
    return l[half]

You can use the list.sort to avoid creating new lists with sorted and sort the lists in place.

Also you should not use list as a variable name as it shadows python’s own list.

def median(l):
    half = len(l) // 2
    l.sort()
    if not len(l) % 2:
        return (l[half - 1] + l[half]) / 2.0
    return l[half]

回答 7

def median(array):
    """Calculate median of the given list.
    """
    # TODO: use statistics.median in Python 3
    array = sorted(array)
    half, odd = divmod(len(array), 2)
    if odd:
        return array[half]
    return (array[half - 1] + array[half]) / 2.0
def median(array):
    """Calculate median of the given list.
    """
    # TODO: use statistics.median in Python 3
    array = sorted(array)
    half, odd = divmod(len(array), 2)
    if odd:
        return array[half]
    return (array[half - 1] + array[half]) / 2.0

回答 8

def median(x):
    x = sorted(x)
    listlength = len(x) 
    num = listlength//2
    if listlength%2==0:
        middlenum = (x[num]+x[num-1])/2
    else:
        middlenum = x[num]
    return middlenum
def median(x):
    x = sorted(x)
    listlength = len(x) 
    num = listlength//2
    if listlength%2==0:
        middlenum = (x[num]+x[num-1])/2
    else:
        middlenum = x[num]
    return middlenum

回答 9

我在“中位数中值”算法的Python实现中发布了我的解决方案,它比使用sort()快一点。我的解决方案每列使用15个数字,速度约为5N,这比每列使用5个数字的速度〜10N要快。最佳速度是〜4N,但是我可能会错。

根据Tom在评论中的要求,我在此处添加了代码,以供参考。我相信速度的关键部分是每列使用15个数字,而不是5个。

#!/bin/pypy
#
# TH @stackoverflow, 2016-01-20, linear time "median of medians" algorithm
#
import sys, random


items_per_column = 15


def find_i_th_smallest( A, i ):
    t = len(A)
    if(t <= items_per_column):
        # if A is a small list with less than items_per_column items, then:
        #
        # 1. do sort on A
        # 2. find i-th smallest item of A
        #
        return sorted(A)[i]
    else:
        # 1. partition A into columns of k items each. k is odd, say 5.
        # 2. find the median of every column
        # 3. put all medians in a new list, say, B
        #
        B = [ find_i_th_smallest(k, (len(k) - 1)/2) for k in [A[j:(j + items_per_column)] for j in range(0,len(A),items_per_column)]]

        # 4. find M, the median of B
        #
        M = find_i_th_smallest(B, (len(B) - 1)/2)


        # 5. split A into 3 parts by M, { < M }, { == M }, and { > M }
        # 6. find which above set has A's i-th smallest, recursively.
        #
        P1 = [ j for j in A if j < M ]
        if(i < len(P1)):
            return find_i_th_smallest( P1, i)
        P3 = [ j for j in A if j > M ]
        L3 = len(P3)
        if(i < (t - L3)):
            return M
        return find_i_th_smallest( P3, i - (t - L3))


# How many numbers should be randomly generated for testing?
#
number_of_numbers = int(sys.argv[1])


# create a list of random positive integers
#
L = [ random.randint(0, number_of_numbers) for i in range(0, number_of_numbers) ]


# Show the original list
#
# print L


# This is for validation
#
# print sorted(L)[int((len(L) - 1)/2)]


# This is the result of the "median of medians" function.
# Its result should be the same as the above.
#
print find_i_th_smallest( L, (len(L) - 1) / 2)

I posted my solution at Python implementation of “median of medians” algorithm , which is a little bit faster than using sort(). My solution uses 15 numbers per column, for a speed ~5N which is faster than the speed ~10N of using 5 numbers per column. The optimal speed is ~4N, but I could be wrong about it.

Per Tom’s request in his comment, I added my code here, for reference. I believe the critical part for speed is using 15 numbers per column, instead of 5.

#!/bin/pypy
#
# TH @stackoverflow, 2016-01-20, linear time "median of medians" algorithm
#
import sys, random


items_per_column = 15


def find_i_th_smallest( A, i ):
    t = len(A)
    if(t <= items_per_column):
        # if A is a small list with less than items_per_column items, then:
        #
        # 1. do sort on A
        # 2. find i-th smallest item of A
        #
        return sorted(A)[i]
    else:
        # 1. partition A into columns of k items each. k is odd, say 5.
        # 2. find the median of every column
        # 3. put all medians in a new list, say, B
        #
        B = [ find_i_th_smallest(k, (len(k) - 1)/2) for k in [A[j:(j + items_per_column)] for j in range(0,len(A),items_per_column)]]

        # 4. find M, the median of B
        #
        M = find_i_th_smallest(B, (len(B) - 1)/2)


        # 5. split A into 3 parts by M, { < M }, { == M }, and { > M }
        # 6. find which above set has A's i-th smallest, recursively.
        #
        P1 = [ j for j in A if j < M ]
        if(i < len(P1)):
            return find_i_th_smallest( P1, i)
        P3 = [ j for j in A if j > M ]
        L3 = len(P3)
        if(i < (t - L3)):
            return M
        return find_i_th_smallest( P3, i - (t - L3))


# How many numbers should be randomly generated for testing?
#
number_of_numbers = int(sys.argv[1])


# create a list of random positive integers
#
L = [ random.randint(0, number_of_numbers) for i in range(0, number_of_numbers) ]


# Show the original list
#
# print L


# This is for validation
#
# print sorted(L)[int((len(L) - 1)/2)]


# This is the result of the "median of medians" function.
# Its result should be the same as the above.
#
print find_i_th_smallest( L, (len(L) - 1) / 2)

回答 10

这是我在Codecademy练习中想出的内容:

def median(data):
    new_list = sorted(data)
    if len(new_list)%2 > 0:
        return new_list[len(new_list)/2]
    elif len(new_list)%2 == 0:
        return (new_list[(len(new_list)/2)] + new_list[(len(new_list)/2)-1]) /2.0

print median([1,2,3,4,5,9])

Here what I came up with during this exercise in Codecademy:

def median(data):
    new_list = sorted(data)
    if len(new_list)%2 > 0:
        return new_list[len(new_list)/2]
    elif len(new_list)%2 == 0:
        return (new_list[(len(new_list)/2)] + new_list[(len(new_list)/2)-1]) /2.0

print median([1,2,3,4,5,9])

回答 11

中位数函数

def median(midlist):
    midlist.sort()
    lens = len(midlist)
    if lens % 2 != 0: 
        midl = (lens / 2)
        res = midlist[midl]
    else:
        odd = (lens / 2) -1
        ev = (lens / 2) 
        res = float(midlist[odd] + midlist[ev]) / float(2)
    return res

median Function

def median(midlist):
    midlist.sort()
    lens = len(midlist)
    if lens % 2 != 0: 
        midl = (lens / 2)
        res = midlist[midl]
    else:
        odd = (lens / 2) -1
        ev = (lens / 2) 
        res = float(midlist[odd] + midlist[ev]) / float(2)
    return res

回答 12

我在浮点值列表方面遇到了一些问题。我最终使用了来自python3 statistics.median的代码片段,并且可以完美地处理没有导入的浮点值。资源

def calculateMedian(list):
    data = sorted(list)
    n = len(data)
    if n == 0:
        return None
    if n % 2 == 1:
        return data[n // 2]
    else:
        i = n // 2
        return (data[i - 1] + data[i]) / 2

I had some problems with lists of float values. I ended up using a code snippet from the python3 statistics.median and is working perfect with float values without imports. source

def calculateMedian(list):
    data = sorted(list)
    n = len(data)
    if n == 0:
        return None
    if n % 2 == 1:
        return data[n // 2]
    else:
        i = n // 2
        return (data[i - 1] + data[i]) / 2

回答 13

def midme(list1):

    list1.sort()
    if len(list1)%2>0:
            x = list1[int((len(list1)/2))]
    else:
            x = ((list1[int((len(list1)/2))-1])+(list1[int(((len(list1)/2)))]))/2
    return x


midme([4,5,1,7,2])
def midme(list1):

    list1.sort()
    if len(list1)%2>0:
            x = list1[int((len(list1)/2))]
    else:
            x = ((list1[int((len(list1)/2))-1])+(list1[int(((len(list1)/2)))]))/2
    return x


midme([4,5,1,7,2])

回答 14

我为数字列表定义了一个中位数函数为

def median(numbers):
    return (sorted(numbers)[int(round((len(numbers) - 1) / 2.0))] + sorted(numbers)[int(round((len(numbers) - 1) // 2.0))]) / 2.0

I defined a median function for a list of numbers as

def median(numbers):
    return (sorted(numbers)[int(round((len(numbers) - 1) / 2.0))] + sorted(numbers)[int(round((len(numbers) - 1) // 2.0))]) / 2.0

回答 15

def median(array):
    if len(array) < 1:
        return(None)
    if len(array) % 2 == 0:
        median = (array[len(array)//2-1: len(array)//2+1])
        return sum(median) / len(median)
    else:
        return(array[len(array)//2])
def median(array):
    if len(array) < 1:
        return(None)
    if len(array) % 2 == 0:
        median = (array[len(array)//2-1: len(array)//2+1])
        return sum(median) / len(median)
    else:
        return(array[len(array)//2])

回答 16

功能中位数:

def median(d):
    d=np.sort(d)
    n2=int(len(d)/2)
    r=n2%2
    if (r==0):
        med=d[n2] 
    else:
        med=(d[n2] + data[m+1]) / 2
    return med

fuction median:

def median(d):
    d=np.sort(d)
    n2=int(len(d)/2)
    r=n2%2
    if (r==0):
        med=d[n2] 
    else:
        med=(d[n2] + data[m+1]) / 2
    return med

回答 17

如果您需要有关列表分配的其他信息,则百分比方法可能会很有用。中值对应于列表的第50个百分位数:

import numpy as np
a = np.array([1,2,3,4,5,6,7,8,9])
median_value = np.percentile(a, 50) # return 50th percentile
print median_value 

In case you need additional information on the distribution of your list, the percentile method will probably be useful. And a median value corresponds to the 50th percentile of a list:

import numpy as np
a = np.array([1,2,3,4,5,6,7,8,9])
median_value = np.percentile(a, 50) # return 50th percentile
print median_value 

回答 18

import numpy as np
def get_median(xs):
        mid = len(xs) // 2  # Take the mid of the list
        if len(xs) % 2 == 1: # check if the len of list is odd
            return sorted(xs)[mid] #if true then mid will be median after sorting
        else:
            #return 0.5 * sum(sorted(xs)[mid - 1:mid + 1])
            return 0.5 * np.sum(sorted(xs)[mid - 1:mid + 1]) #if false take the avg of mid
print(get_median([7, 7, 3, 1, 4, 5]))
print(get_median([1,2,3, 4,5]))
import numpy as np
def get_median(xs):
        mid = len(xs) // 2  # Take the mid of the list
        if len(xs) % 2 == 1: # check if the len of list is odd
            return sorted(xs)[mid] #if true then mid will be median after sorting
        else:
            #return 0.5 * sum(sorted(xs)[mid - 1:mid + 1])
            return 0.5 * np.sum(sorted(xs)[mid - 1:mid + 1]) #if false take the avg of mid
print(get_median([7, 7, 3, 1, 4, 5]))
print(get_median([1,2,3, 4,5]))

回答 19

中位数(和百分位数)的更通用方法是:

def get_percentile(data, percentile):
    # Get the number of observations
    cnt=len(data)
    # Sort the list
    data=sorted(data)
    # Determine the split point
    i=(cnt-1)*percentile
    # Find the `floor` of the split point
    diff=i-int(i)
    # Return the weighted average of the value above and below the split point
    return data[int(i)]*(1-diff)+data[int(i)+1]*(diff)

# Data
data=[1,2,3,4,5]
# For the median
print(get_percentile(data=data, percentile=.50))
# > 3
print(get_percentile(data=data, percentile=.75))
# > 4

# Note the weighted average difference when an int is not returned by the percentile
print(get_percentile(data=data, percentile=.51))
# > 3.04

A more generalized approach for median (and percentiles) would be:

def get_percentile(data, percentile):
    # Get the number of observations
    cnt=len(data)
    # Sort the list
    data=sorted(data)
    # Determine the split point
    i=(cnt-1)*percentile
    # Find the `floor` of the split point
    diff=i-int(i)
    # Return the weighted average of the value above and below the split point
    return data[int(i)]*(1-diff)+data[int(i)+1]*(diff)

# Data
data=[1,2,3,4,5]
# For the median
print(get_percentile(data=data, percentile=.50))
# > 3
print(get_percentile(data=data, percentile=.75))
# > 4

# Note the weighted average difference when an int is not returned by the percentile
print(get_percentile(data=data, percentile=.51))
# > 3.04


回答 20

一个简单的函数返回给定列表的中位数:

def median(lsts):
        if len(lsts)%2 == 0:  #Checking if the length is even
            return (lsts[len(lsts)//2] + lsts[(len(lsts) - 1) //2]) //2 # Applying formula which is sum of middle two divided by 2
            
        else:
            return lsts[len(lsts)//2] # If length is odd then get middle value
            
        
median([2,3,5,6,10]) #Calling function

如果您想使用库,则只需做一下即可;

import statistics

statistics.median([9, 12, 20, 21, 34, 80])

A simple function to return the median of the given list:

def median(lst):
    lst.sort()  # Sort the list first
    if len(lst) % 2 == 0:  # Checking if the length is even
        # Applying formula which is sum of middle two divided by 2
        return (lst[len(lst) // 2] + lst[(len(lst) - 1) // 2]) / 2
    else:
        # If length is odd then get middle value
        return lst[len(lst) // 2]

Some examples with the medain function:

>>> median([9, 12, 20, 21, 34, 80])  # Even
20.5
>>> median([9, 12, 80, 21, 34])  # Odd
21

If you want to use library you can just simply do:

>>> import statistics
>>> statistics.median([9, 12, 20, 21, 34, 80])  # Even
20.5
>>> statistics.median([9, 12, 80, 21, 34])  # Odd
21

回答 21

这是不使用median函数来查找中位数的乏味方法:

def median(*arg):
    order(arg)
    numArg = len(arg)
    half = int(numArg/2)
    if numArg/2 ==half:
        print((arg[half-1]+arg[half])/2)
    else:
        print(int(arg[half]))

def order(tup):
    ordered = [tup[i] for i in range(len(tup))]
    test(ordered)
    while(test(ordered)):
        test(ordered)
    print(ordered)


def test(ordered):
    whileloop = 0 
    for i in range(len(ordered)-1):
        print(i)
        if (ordered[i]>ordered[i+1]):
            print(str(ordered[i]) + ' is greater than ' + str(ordered[i+1]))
            original = ordered[i+1]
            ordered[i+1]=ordered[i]
            ordered[i]=original
            whileloop = 1 #run the loop again if you had to switch values
    return whileloop

Here’s the tedious way to find median without using the median function:

def median(*arg):
    order(arg)
    numArg = len(arg)
    half = int(numArg/2)
    if numArg/2 ==half:
        print((arg[half-1]+arg[half])/2)
    else:
        print(int(arg[half]))

def order(tup):
    ordered = [tup[i] for i in range(len(tup))]
    test(ordered)
    while(test(ordered)):
        test(ordered)
    print(ordered)


def test(ordered):
    whileloop = 0 
    for i in range(len(ordered)-1):
        print(i)
        if (ordered[i]>ordered[i+1]):
            print(str(ordered[i]) + ' is greater than ' + str(ordered[i+1]))
            original = ordered[i+1]
            ordered[i+1]=ordered[i]
            ordered[i]=original
            whileloop = 1 #run the loop again if you had to switch values
    return whileloop

回答 22

这很简单;

def median(alist):
    #to find median you will have to sort the list first
    sList = sorted(alist)
    first = 0
    last = len(sList)-1
    midpoint = (first + last)//2
    return midpoint

你可以这样使用返回值 median = median(anyList)

It is very simple;

def median(alist):
    #to find median you will have to sort the list first
    sList = sorted(alist)
    first = 0
    last = len(sList)-1
    midpoint = (first + last)//2
    return midpoint

And you can use the return value like this median = median(anyList)