问题:在python中获取随机布尔值?
我正在寻找最好的方法(快速而优雅)来获取python中的随机布尔值(翻转硬币)。
目前,我正在使用random.randint(0, 1)
或random.getrandbits(1)
。
有我不知道的更好的选择吗?
I am looking for the best way (fast and elegant) to get a random boolean in python (flip a coin).
For the moment I am using random.randint(0, 1)
or random.getrandbits(1)
.
Are there better choices that I am not aware of?
回答 0
亚当的答案相当快,但是我发现答案random.getrandbits(1)
要快得多。如果您真的想要布尔值而不是long值,那么
bool(random.getrandbits(1))
仍然是两倍的速度 random.choice([True, False])
两种解决方案都需要 import random
如果最大的速度不是优先考虑的话,那么random.choice
绝对可以读得更好
$ python -m timeit -s "import random" "random.choice([True, False])"
1000000 loops, best of 3: 0.904 usec per loop
$ python -m timeit -s "import random" "random.choice((True, False))"
1000000 loops, best of 3: 0.846 usec per loop
$ python -m timeit -s "import random" "random.getrandbits(1)"
1000000 loops, best of 3: 0.286 usec per loop
$ python -m timeit -s "import random" "bool(random.getrandbits(1))"
1000000 loops, best of 3: 0.441 usec per loop
$ python -m timeit -s "import random" "not random.getrandbits(1)"
1000000 loops, best of 3: 0.308 usec per loop
$ python -m timeit -s "from random import getrandbits" "not getrandbits(1)"
1000000 loops, best of 3: 0.262 usec per loop # not takes about 20us of this
在看到@Pavel的答案后添加了此内容
$ python -m timeit -s "from random import random" "random() < 0.5"
10000000 loops, best of 3: 0.115 usec per loop
Adam’s answer is quite fast, but I found that random.getrandbits(1)
to be quite a lot faster. If you really want a boolean instead of a long then
bool(random.getrandbits(1))
is still about twice as fast as random.choice([True, False])
Both solutions need to import random
If utmost speed isn’t to priority then random.choice
definitely reads better
$ python -m timeit -s "import random" "random.choice([True, False])"
1000000 loops, best of 3: 0.904 usec per loop
$ python -m timeit -s "import random" "random.choice((True, False))"
1000000 loops, best of 3: 0.846 usec per loop
$ python -m timeit -s "import random" "random.getrandbits(1)"
1000000 loops, best of 3: 0.286 usec per loop
$ python -m timeit -s "import random" "bool(random.getrandbits(1))"
1000000 loops, best of 3: 0.441 usec per loop
$ python -m timeit -s "import random" "not random.getrandbits(1)"
1000000 loops, best of 3: 0.308 usec per loop
$ python -m timeit -s "from random import getrandbits" "not getrandbits(1)"
1000000 loops, best of 3: 0.262 usec per loop # not takes about 20us of this
Added this one after seeing @Pavel’s answer
$ python -m timeit -s "from random import random" "random() < 0.5"
10000000 loops, best of 3: 0.115 usec per loop
回答 1
random.choice([True, False])
也可以。
random.choice([True, False])
would also work.
回答 2
找到了更快的方法:
$ python -m timeit -s "from random import getrandbits" "not getrandbits(1)"
10000000 loops, best of 3: 0.222 usec per loop
$ python -m timeit -s "from random import random" "True if random() > 0.5 else False"
10000000 loops, best of 3: 0.0786 usec per loop
$ python -m timeit -s "from random import random" "random() > 0.5"
10000000 loops, best of 3: 0.0579 usec per loop
Found a faster method:
$ python -m timeit -s "from random import getrandbits" "not getrandbits(1)"
10000000 loops, best of 3: 0.222 usec per loop
$ python -m timeit -s "from random import random" "True if random() > 0.5 else False"
10000000 loops, best of 3: 0.0786 usec per loop
$ python -m timeit -s "from random import random" "random() > 0.5"
10000000 loops, best of 3: 0.0579 usec per loop
回答 3
我喜欢
np.random.rand() > .5
I like
np.random.rand() > .5
回答 4
如果要生成许多随机布尔值,可以使用numpy的random模块。从文档中
np.random.randint(2, size=10)
将在开放时间间隔[0,2)中返回10个随机一致整数。所述size
关键字指定的值的数目,以产生。
If you want to generate a number of random booleans you could use numpy’s random module. From the documentation
np.random.randint(2, size=10)
will return 10 random uniform integers in the open interval [0,2). The size
keyword specifies the number of values to generate.
回答 5
我很想知道numpy答案相对于其他答案的表现如何,因为这没有进行比较。要生成一个随机布尔,速度要慢得多,但是如果要生成多个布尔值,则速度会快得多:
$ python -m timeit -s "from random import random" "random() < 0.5"
10000000 loops, best of 3: 0.0906 usec per loop
$ python -m timeit -s "import numpy as np" "np.random.randint(2, size=1)"
100000 loops, best of 3: 4.65 usec per loop
$ python -m timeit -s "from random import random" "test = [random() < 0.5 for i in range(1000000)]"
10 loops, best of 3: 118 msec per loop
$ python -m timeit -s "import numpy as np" "test = np.random.randint(2, size=1000000)"
100 loops, best of 3: 6.31 msec per loop
I was curious as to how the speed of the numpy answer performed against the other answers since this was left out of the comparisons. To generate one random bool this is much slower but if you wanted to generate many then this becomes much faster:
$ python -m timeit -s "from random import random" "random() < 0.5"
10000000 loops, best of 3: 0.0906 usec per loop
$ python -m timeit -s "import numpy as np" "np.random.randint(2, size=1)"
100000 loops, best of 3: 4.65 usec per loop
$ python -m timeit -s "from random import random" "test = [random() < 0.5 for i in range(1000000)]"
10 loops, best of 3: 118 msec per loop
$ python -m timeit -s "import numpy as np" "test = np.random.randint(2, size=1000000)"
100 loops, best of 3: 6.31 msec per loop
回答 6
You could use the Faker library, it’s mainly used for testing, but is capable of providing a variety of fake data.
Install: https://pypi.org/project/Faker/
>>> from faker import Faker
>>> fake = Faker()
>>> fake.pybool()
True
回答 7
有关此问题的新观点将涉及使用Faker,您可以轻松地使用Faker安装它pip
。
from faker import Factory
#----------------------------------------------------------------------
def create_values(fake):
""""""
print fake.boolean(chance_of_getting_true=50) # True
print fake.random_int(min=0, max=1) # 1
if __name__ == "__main__":
fake = Factory.create()
create_values(fake)
A new take on this question would involve the use of Faker which you can install easily with pip
.
from faker import Factory
#----------------------------------------------------------------------
def create_values(fake):
""""""
print fake.boolean(chance_of_getting_true=50) # True
print fake.random_int(min=0, max=1) # 1
if __name__ == "__main__":
fake = Factory.create()
create_values(fake)