问题:在Python中遍历一系列日期
我有以下代码可以做到这一点,但是我该如何做得更好呢?现在,我认为它比嵌套循环更好,但是当列表理解器中包含生成器时,它开始变得Perl-linerish。
day_count = (end_date - start_date).days + 1
for single_date in [d for d in (start_date + timedelta(n) for n in range(day_count)) if d <= end_date]:
print strftime("%Y-%m-%d", single_date.timetuple())
笔记
- 我实际上并没有用它来打印。这只是出于演示目的。
- 在
start_date
和end_date
变量是datetime.date
因为我不需要时间戳对象。(它们将用于生成报告)。
样本输出
开始日期为2009-05-30
,结束日期为2009-06-09
:
2009-05-30
2009-05-31
2009-06-01
2009-06-02
2009-06-03
2009-06-04
2009-06-05
2009-06-06
2009-06-07
2009-06-08
2009-06-09
回答 0
为什么会有两个嵌套的迭代?对我来说,它仅需一次迭代即可生成相同的数据列表:
for single_date in (start_date + timedelta(n) for n in range(day_count)):
print ...
而且没有存储任何列表,仅迭代了一个生成器。同样,生成器中的“ if”似乎不必要。
毕竟,线性序列只需要一个迭代器,而不是两个。
与John Machin讨论后更新:
也许最优雅的解决方案是使用生成器函数完全隐藏/抽象日期范围内的迭代:
from datetime import timedelta, date
def daterange(start_date, end_date):
for n in range(int ((end_date - start_date).days)):
yield start_date + timedelta(n)
start_date = date(2013, 1, 1)
end_date = date(2015, 6, 2)
for single_date in daterange(start_date, end_date):
print(single_date.strftime("%Y-%m-%d"))
注意:为了与内置range()
函数保持一致,此迭代在到达之前停止end_date
。因此,对于包容迭代,请使用第二天,就像使用一样range()
。
回答 1
这可能更清楚:
from datetime import date, timedelta
start_date = date(2019, 1, 1)
end_date = date(2020, 1, 1)
delta = timedelta(days=1)
while start_date <= end_date:
print (start_date.strftime("%Y-%m-%d"))
start_date += delta
回答 2
使用dateutil
库:
from datetime import date
from dateutil.rrule import rrule, DAILY
a = date(2009, 5, 30)
b = date(2009, 6, 9)
for dt in rrule(DAILY, dtstart=a, until=b):
print dt.strftime("%Y-%m-%d")
该python库具有许多更高级的功能,例如relative delta
s 等非常有用的功能,并以单个文件(模块)的形式实现,很容易包含在项目中。
回答 3
总体而言,Pandas非常适合用于时间序列,并且直接支持日期范围。
import pandas as pd
daterange = pd.date_range(start_date, end_date)
然后,您可以遍历日期范围以打印日期:
for single_date in daterange:
print (single_date.strftime("%Y-%m-%d"))
它还有很多选择可以使生活更轻松。例如,如果您只想要工作日,则只需交换bdate_range。请参阅http://pandas.pydata.org/pandas-docs/stable/timeseries.html#generating-ranges-of-timestamps
Pandas的强大功能实际上就是其数据帧,它支持矢量化操作(非常类似于numpy),使跨大量数据的操作变得非常快速和容易。
编辑:您也可以完全跳过for循环,而直接直接打印它,这更容易,更有效:
print(daterange)
回答 4
import datetime
def daterange(start, stop, step=datetime.timedelta(days=1), inclusive=False):
# inclusive=False to behave like range by default
if step.days > 0:
while start < stop:
yield start
start = start + step
# not +=! don't modify object passed in if it's mutable
# since this function is not restricted to
# only types from datetime module
elif step.days < 0:
while start > stop:
yield start
start = start + step
if inclusive and start == stop:
yield start
# ...
for date in daterange(start_date, end_date, inclusive=True):
print strftime("%Y-%m-%d", date.timetuple())
通过支持负步等,此函数可以完成超出您严格要求的范围。只要您考虑范围逻辑,就不需要单独使用day_count
,最重要的是,当您从多个函数中调用函数时,代码变得更易于阅读的地方。
回答 5
这是我能想到的最易读的解决方案。
import datetime
def daterange(start, end, step=datetime.timedelta(1)):
curr = start
while curr < end:
yield curr
curr += step
回答 6
为什么不尝试:
import datetime as dt
start_date = dt.datetime(2012, 12,1)
end_date = dt.datetime(2012, 12,5)
total_days = (end_date - start_date).days + 1 #inclusive 5 days
for day_number in range(total_days):
current_date = (start_date + dt.timedelta(days = day_number)).date()
print current_date
回答 7
Numpy arange
函数可以应用于日期:
import numpy as np
from datetime import datetime, timedelta
d0 = datetime(2009, 1,1)
d1 = datetime(2010, 1,1)
dt = timedelta(days = 1)
dates = np.arange(d0, d1, dt).astype(datetime)
的用途astype
是将转换numpy.datetime64
为datetime.datetime
对象数组。
回答 8
显示从今天开始的最近n天:
import datetime
for i in range(0, 100):
print((datetime.date.today() + datetime.timedelta(i)).isoformat())
输出:
2016-06-29
2016-06-30
2016-07-01
2016-07-02
2016-07-03
2016-07-04
回答 9
import datetime
def daterange(start, stop, step_days=1):
current = start
step = datetime.timedelta(step_days)
if step_days > 0:
while current < stop:
yield current
current += step
elif step_days < 0:
while current > stop:
yield current
current += step
else:
raise ValueError("daterange() step_days argument must not be zero")
if __name__ == "__main__":
from pprint import pprint as pp
lo = datetime.date(2008, 12, 27)
hi = datetime.date(2009, 1, 5)
pp(list(daterange(lo, hi)))
pp(list(daterange(hi, lo, -1)))
pp(list(daterange(lo, hi, 7)))
pp(list(daterange(hi, lo, -7)))
assert not list(daterange(lo, hi, -1))
assert not list(daterange(hi, lo))
assert not list(daterange(lo, hi, -7))
assert not list(daterange(hi, lo, 7))
回答 10
for i in range(16):
print datetime.date.today() + datetime.timedelta(days=i)
回答 11
为了完整起见,Pandas还提供了一个period_range
超出范围的时间戳功能:
import pandas as pd
pd.period_range(start='1/1/1626', end='1/08/1627', freq='D')
回答 12
我有一个类似的问题,但是我需要每月而不是每天进行迭代。
这是我的解决方案
import calendar
from datetime import datetime, timedelta
def days_in_month(dt):
return calendar.monthrange(dt.year, dt.month)[1]
def monthly_range(dt_start, dt_end):
forward = dt_end >= dt_start
finish = False
dt = dt_start
while not finish:
yield dt.date()
if forward:
days = days_in_month(dt)
dt = dt + timedelta(days=days)
finish = dt > dt_end
else:
_tmp_dt = dt.replace(day=1) - timedelta(days=1)
dt = (_tmp_dt.replace(day=dt.day))
finish = dt < dt_end
例子1
date_start = datetime(2016, 6, 1)
date_end = datetime(2017, 1, 1)
for p in monthly_range(date_start, date_end):
print(p)
输出量
2016-06-01
2016-07-01
2016-08-01
2016-09-01
2016-10-01
2016-11-01
2016-12-01
2017-01-01
范例#2
date_start = datetime(2017, 1, 1)
date_end = datetime(2016, 6, 1)
for p in monthly_range(date_start, date_end):
print(p)
输出量
2017-01-01
2016-12-01
2016-11-01
2016-10-01
2016-09-01
2016-08-01
2016-07-01
2016-06-01
回答 13
可以“T *相信这个问题已经存在了9年,没有任何人暗示一个简单的递归函数:
from datetime import datetime, timedelta
def walk_days(start_date, end_date):
if start_date <= end_date:
print(start_date.strftime("%Y-%m-%d"))
next_date = start_date + timedelta(days=1)
walk_days(next_date, end_date)
#demo
start_date = datetime(2009, 5, 30)
end_date = datetime(2009, 6, 9)
walk_days(start_date, end_date)
输出:
2009-05-30
2009-05-31
2009-06-01
2009-06-02
2009-06-03
2009-06-04
2009-06-05
2009-06-06
2009-06-07
2009-06-08
2009-06-09
编辑: *现在我可以相信-请参阅Python是否优化了尾递归?。谢谢你添。
回答 14
您可以使用pandas库简单可靠地生成两个日期之间的一系列日期
import pandas as pd
print pd.date_range(start='1/1/2010', end='1/08/2018', freq='M')
您可以通过将频率设置为D,M,Q,Y(每天,每月,每季度,每年)来更改生成日期的频率。
回答 15
> pip install DateTimeRange
from datetimerange import DateTimeRange
def dateRange(start, end, step):
rangeList = []
time_range = DateTimeRange(start, end)
for value in time_range.range(datetime.timedelta(days=step)):
rangeList.append(value.strftime('%m/%d/%Y'))
return rangeList
dateRange("2018-09-07", "2018-12-25", 7)
Out[92]:
['09/07/2018',
'09/14/2018',
'09/21/2018',
'09/28/2018',
'10/05/2018',
'10/12/2018',
'10/19/2018',
'10/26/2018',
'11/02/2018',
'11/09/2018',
'11/16/2018',
'11/23/2018',
'11/30/2018',
'12/07/2018',
'12/14/2018',
'12/21/2018']
回答 16
此功能有一些额外的功能:
- 可以传递与DATE_FORMAT匹配的字符串作为开始或结束,并将其转换为日期对象
- 可以传递日期对象作为开始或结束
如果结束比开始更早,则进行错误检查
import datetime from datetime import timedelta DATE_FORMAT = '%Y/%m/%d' def daterange(start, end): def convert(date): try: date = datetime.datetime.strptime(date, DATE_FORMAT) return date.date() except TypeError: return date def get_date(n): return datetime.datetime.strftime(convert(start) + timedelta(days=n), DATE_FORMAT) days = (convert(end) - convert(start)).days if days <= 0: raise ValueError('The start date must be before the end date.') for n in range(0, days): yield get_date(n) start = '2014/12/1' end = '2014/12/31' print list(daterange(start, end)) start_ = datetime.date.today() end = '2015/12/1' print list(daterange(start, end))
回答 17
这是通用日期范围函数的代码,类似于Ber的答案,但更灵活:
def count_timedelta(delta, step, seconds_in_interval):
"""Helper function for iterate. Finds the number of intervals in the timedelta."""
return int(delta.total_seconds() / (seconds_in_interval * step))
def range_dt(start, end, step=1, interval='day'):
"""Iterate over datetimes or dates, similar to builtin range."""
intervals = functools.partial(count_timedelta, (end - start), step)
if interval == 'week':
for i in range(intervals(3600 * 24 * 7)):
yield start + datetime.timedelta(weeks=i) * step
elif interval == 'day':
for i in range(intervals(3600 * 24)):
yield start + datetime.timedelta(days=i) * step
elif interval == 'hour':
for i in range(intervals(3600)):
yield start + datetime.timedelta(hours=i) * step
elif interval == 'minute':
for i in range(intervals(60)):
yield start + datetime.timedelta(minutes=i) * step
elif interval == 'second':
for i in range(intervals(1)):
yield start + datetime.timedelta(seconds=i) * step
elif interval == 'millisecond':
for i in range(intervals(1 / 1000)):
yield start + datetime.timedelta(milliseconds=i) * step
elif interval == 'microsecond':
for i in range(intervals(1e-6)):
yield start + datetime.timedelta(microseconds=i) * step
else:
raise AttributeError("Interval must be 'week', 'day', 'hour' 'second', \
'microsecond' or 'millisecond'.")
回答 18
对于以天为单位递增的范围,以下内容如何处理:
for d in map( lambda x: startDate+datetime.timedelta(days=x), xrange( (stopDate-startDate).days ) ):
# Do stuff here
- startDate和stopDate是datetime.date对象
对于通用版本:
for d in map( lambda x: startTime+x*stepTime, xrange( (stopTime-startTime).total_seconds() / stepTime.total_seconds() ) ):
# Do stuff here
- startTime和stopTime是datetime.date或datetime.datetime对象(两者应为同一类型)
- stepTime是一个timedelta对象
请注意,仅在python 2.7之后才支持.total_seconds()。如果您使用的是早期版本,则可以编写自己的函数:
def total_seconds( td ):
return float(td.microseconds + (td.seconds + td.days * 24 * 3600) * 10**6) / 10**6
回答 19
通过将range
args 存储在元组中,可逆步骤的方法略有不同。
def date_range(start, stop, step=1, inclusive=False):
day_count = (stop - start).days
if inclusive:
day_count += 1
if step > 0:
range_args = (0, day_count, step)
elif step < 0:
range_args = (day_count - 1, -1, step)
else:
raise ValueError("date_range(): step arg must be non-zero")
for i in range(*range_args):
yield start + timedelta(days=i)
回答 20
import datetime
from dateutil.rrule import DAILY,rrule
date=datetime.datetime(2019,1,10)
date1=datetime.datetime(2019,2,2)
for i in rrule(DAILY , dtstart=date,until=date1):
print(i.strftime('%Y%b%d'),sep='\n')
输出:
2019Jan10
2019Jan11
2019Jan12
2019Jan13
2019Jan14
2019Jan15
2019Jan16
2019Jan17
2019Jan18
2019Jan19
2019Jan20
2019Jan21
2019Jan22
2019Jan23
2019Jan24
2019Jan25
2019Jan26
2019Jan27
2019Jan28
2019Jan29
2019Jan30
2019Jan31
2019Feb01
2019Feb02