如何从列表列表中制作平面列表?

问题:如何从列表列表中制作平面列表?

我想知道是否有捷径可以从Python的列表清单中做出一个简单的清单。

我可以for循环执行此操作,但是也许有一些很酷的“单线”功能?我尝试使用reduce(),但出现错误。

l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
reduce(lambda x, y: x.extend(y), l)

错误信息

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 1, in <lambda>
AttributeError: 'NoneType' object has no attribute 'extend'

I wonder whether there is a shortcut to make a simple list out of list of lists in Python.

I can do that in a for loop, but maybe there is some cool “one-liner”? I tried it with reduce(), but I get an error.

Code

l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
reduce(lambda x, y: x.extend(y), l)

Error message

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 1, in <lambda>
AttributeError: 'NoneType' object has no attribute 'extend'

回答 0

给定一个列表列表l

flat_list = [item for sublist in l for item in sublist]

意思是:

flat_list = []
for sublist in l:
    for item in sublist:
        flat_list.append(item)

比到目前为止发布的快捷方式快。(l是要展平的列表。)

这是相应的功能:

flatten = lambda l: [item for sublist in l for item in sublist]

作为证据,您可以使用timeit标准库中的模块:

$ python -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99' '[item for sublist in l for item in sublist]'
10000 loops, best of 3: 143 usec per loop
$ python -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99' 'sum(l, [])'
1000 loops, best of 3: 969 usec per loop
$ python -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99' 'reduce(lambda x,y: x+y,l)'
1000 loops, best of 3: 1.1 msec per loop

说明:基于快捷方式+(包括中的隐含使用sum)的必要性是O(L**2)当有L个子列表时-随着中间结果列表的长度越来越长,每一步都会分配一个新的中间结果列表对象,并且所有项目必须复制前一个中间结果中的结果(以及最后添加的一些新结果)。因此,为简单起见,而又不失去一般性,请说您有I个项目的L个子列表:第一个I项目来回复制L-1次,第二个I项目L-2次,依此类推;等等。总份数是I乘以x从1到L的x的总和,即I * (L**2)/2

列表理解只生成一次列表,然后将每个项目(从其原始居住地复制到结果列表)也恰好复制一次。

Given a list of lists l,

flat_list = [item for sublist in l for item in sublist]

which means:

flat_list = []
for sublist in l:
    for item in sublist:
        flat_list.append(item)

is faster than the shortcuts posted so far. (l is the list to flatten.)

Here is the corresponding function:

flatten = lambda l: [item for sublist in l for item in sublist]

As evidence, you can use the timeit module in the standard library:

$ python -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99' '[item for sublist in l for item in sublist]'
10000 loops, best of 3: 143 usec per loop
$ python -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99' 'sum(l, [])'
1000 loops, best of 3: 969 usec per loop
$ python -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99' 'reduce(lambda x,y: x+y,l)'
1000 loops, best of 3: 1.1 msec per loop

Explanation: the shortcuts based on + (including the implied use in sum) are, of necessity, O(L**2) when there are L sublists — as the intermediate result list keeps getting longer, at each step a new intermediate result list object gets allocated, and all the items in the previous intermediate result must be copied over (as well as a few new ones added at the end). So, for simplicity and without actual loss of generality, say you have L sublists of I items each: the first I items are copied back and forth L-1 times, the second I items L-2 times, and so on; total number of copies is I times the sum of x for x from 1 to L excluded, i.e., I * (L**2)/2.

The list comprehension just generates one list, once, and copies each item over (from its original place of residence to the result list) also exactly once.


回答 1

您可以使用itertools.chain()

import itertools
list2d = [[1,2,3], [4,5,6], [7], [8,9]]
merged = list(itertools.chain(*list2d))

或者,您可以使用itertools.chain.from_iterable()不需要使用*运算符解压缩列表的方法:

import itertools
list2d = [[1,2,3], [4,5,6], [7], [8,9]]
merged = list(itertools.chain.from_iterable(list2d))

You can use itertools.chain():

import itertools
list2d = [[1,2,3], [4,5,6], [7], [8,9]]
merged = list(itertools.chain(*list2d))

Or you can use itertools.chain.from_iterable() which doesn’t require unpacking the list with the * operator:

import itertools
list2d = [[1,2,3], [4,5,6], [7], [8,9]]
merged = list(itertools.chain.from_iterable(list2d))

回答 2

作者注意:这是低效的。但是很有趣,因为类人猿很棒。它不适用于生产Python代码。

>>> sum(l, [])
[1, 2, 3, 4, 5, 6, 7, 8, 9]

这只是对在第一个参数中传递的iterable元素求和,将第二个参数视为和的初始值(如果未给出,0则改为使用和,这种情况下会给您带来错误)。

由于您是对嵌套列表求和,因此实际上得到[1,3]+[2,4]的结果sum([[1,3],[2,4]],[])等于[1,3,2,4]

请注意,仅适用于列表列表。对于列表列表列表,您将需要其他解决方案。

Note from the author: This is inefficient. But fun, because monoids are awesome. It’s not appropriate for production Python code.

>>> sum(l, [])
[1, 2, 3, 4, 5, 6, 7, 8, 9]

This just sums the elements of iterable passed in the first argument, treating second argument as the initial value of the sum (if not given, 0 is used instead and this case will give you an error).

Because you are summing nested lists, you actually get [1,3]+[2,4] as a result of sum([[1,3],[2,4]],[]), which is equal to [1,3,2,4].

Note that only works on lists of lists. For lists of lists of lists, you’ll need another solution.


回答 3

我使用perfplot(我的一个宠物项目,本质上是一个包装纸timeit)测试了大多数建议的解决方案,然后发现

functools.reduce(operator.iconcat, a, [])

串联多个小列表和几个长列表时,这是最快的解决方案。(operator.iadd同样快。)


复制剧情的代码:

import functools
import itertools
import numpy
import operator
import perfplot


def forfor(a):
    return [item for sublist in a for item in sublist]


def sum_brackets(a):
    return sum(a, [])


def functools_reduce(a):
    return functools.reduce(operator.concat, a)


def functools_reduce_iconcat(a):
    return functools.reduce(operator.iconcat, a, [])


def itertools_chain(a):
    return list(itertools.chain.from_iterable(a))


def numpy_flat(a):
    return list(numpy.array(a).flat)


def numpy_concatenate(a):
    return list(numpy.concatenate(a))


perfplot.show(
    setup=lambda n: [list(range(10))] * n,
    # setup=lambda n: [list(range(n))] * 10,
    kernels=[
        forfor,
        sum_brackets,
        functools_reduce,
        functools_reduce_iconcat,
        itertools_chain,
        numpy_flat,
        numpy_concatenate,
    ],
    n_range=[2 ** k for k in range(16)],
    xlabel="num lists (of length 10)",
    # xlabel="len lists (10 lists total)"
)

I tested most suggested solutions with perfplot (a pet project of mine, essentially a wrapper around timeit), and found

functools.reduce(operator.iconcat, a, [])

to be the fastest solution, both when many small lists and few long lists are concatenated. (operator.iadd is equally fast.)


Code to reproduce the plot:

import functools
import itertools
import numpy
import operator
import perfplot


def forfor(a):
    return [item for sublist in a for item in sublist]


def sum_brackets(a):
    return sum(a, [])


def functools_reduce(a):
    return functools.reduce(operator.concat, a)


def functools_reduce_iconcat(a):
    return functools.reduce(operator.iconcat, a, [])


def itertools_chain(a):
    return list(itertools.chain.from_iterable(a))


def numpy_flat(a):
    return list(numpy.array(a).flat)


def numpy_concatenate(a):
    return list(numpy.concatenate(a))


perfplot.show(
    setup=lambda n: [list(range(10))] * n,
    # setup=lambda n: [list(range(n))] * 10,
    kernels=[
        forfor,
        sum_brackets,
        functools_reduce,
        functools_reduce_iconcat,
        itertools_chain,
        numpy_flat,
        numpy_concatenate,
    ],
    n_range=[2 ** k for k in range(16)],
    xlabel="num lists (of length 10)",
    # xlabel="len lists (10 lists total)"
)

回答 4

from functools import reduce #python 3

>>> l = [[1,2,3],[4,5,6], [7], [8,9]]
>>> reduce(lambda x,y: x+y,l)
[1, 2, 3, 4, 5, 6, 7, 8, 9]

extend()您的示例中的方法将修改x而不是返回有用的值(期望值reduce())。

reduce版本的更快方法是

>>> import operator
>>> l = [[1,2,3],[4,5,6], [7], [8,9]]
>>> reduce(operator.concat, l)
[1, 2, 3, 4, 5, 6, 7, 8, 9]
from functools import reduce #python 3

>>> l = [[1,2,3],[4,5,6], [7], [8,9]]
>>> reduce(lambda x,y: x+y,l)
[1, 2, 3, 4, 5, 6, 7, 8, 9]

The extend() method in your example modifies x instead of returning a useful value (which reduce() expects).

A faster way to do the reduce version would be

>>> import operator
>>> l = [[1,2,3],[4,5,6], [7], [8,9]]
>>> reduce(operator.concat, l)
[1, 2, 3, 4, 5, 6, 7, 8, 9]

回答 5

如果您使用Django,请不要重新发明轮子:

>>> from django.contrib.admin.utils import flatten
>>> l = [[1,2,3], [4,5], [6]]
>>> flatten(l)
>>> [1, 2, 3, 4, 5, 6]

熊猫

>>> from pandas.core.common import flatten
>>> list(flatten(l))

Itertools

>>> import itertools
>>> flatten = itertools.chain.from_iterable
>>> list(flatten(l))

Matplotlib

>>> from matplotlib.cbook import flatten
>>> list(flatten(l))

Unipath

>>> from unipath.path import flatten
>>> list(flatten(l))

Setuptools

>>> from setuptools.namespaces import flatten
>>> list(flatten(l))

Don’t reinvent the wheel if you use Django:

>>> from django.contrib.admin.utils import flatten
>>> l = [[1,2,3], [4,5], [6]]
>>> flatten(l)
>>> [1, 2, 3, 4, 5, 6]

Pandas:

>>> from pandas.core.common import flatten
>>> list(flatten(l))

Itertools:

>>> import itertools
>>> flatten = itertools.chain.from_iterable
>>> list(flatten(l))

Matplotlib

>>> from matplotlib.cbook import flatten
>>> list(flatten(l))

Unipath:

>>> from unipath.path import flatten
>>> list(flatten(l))

Setuptools:

>>> from setuptools.namespaces import flatten
>>> list(flatten(l))

回答 6

这是适用于数字字符串嵌套列表和混合容器的通用方法。

#from typing import Iterable 
from collections import Iterable                            # < py38


def flatten(items):
    """Yield items from any nested iterable; see Reference."""
    for x in items:
        if isinstance(x, Iterable) and not isinstance(x, (str, bytes)):
            for sub_x in flatten(x):
                yield sub_x
        else:
            yield x

注意事项

  • 在Python 3中,yield from flatten(x)可以替换for sub_x in flatten(x): yield sub_x
  • 在Python 3.8,抽象基类移动collection.abc所述typing模块。

演示版

lst = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
list(flatten(lst))                                         # nested lists
# [1, 2, 3, 4, 5, 6, 7, 8, 9]

mixed = [[1, [2]], (3, 4, {5, 6}, 7), 8, "9"]              # numbers, strs, nested & mixed
list(flatten(mixed))
# [1, 2, 3, 4, 5, 6, 7, 8, '9']

参考

  • 此解决方案是根据Beazley,D.和B. Jones的食谱修改的。食谱4.14,Python Cookbook第三版,O’Reilly Media Inc.,塞巴斯托波尔,加利福尼亚:2013年。
  • 找到了较早的SO帖子,可能是原始的演示。

Here is a general approach that applies to numbers, strings, nested lists and mixed containers.

Code

#from typing import Iterable 
from collections import Iterable                            # < py38


def flatten(items):
    """Yield items from any nested iterable; see Reference."""
    for x in items:
        if isinstance(x, Iterable) and not isinstance(x, (str, bytes)):
            for sub_x in flatten(x):
                yield sub_x
        else:
            yield x

Notes:

  • In Python 3, yield from flatten(x) can replace for sub_x in flatten(x): yield sub_x
  • In Python 3.8, abstract base classes are moved from collection.abc to the typing module.

Demo

lst = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
list(flatten(lst))                                         # nested lists
# [1, 2, 3, 4, 5, 6, 7, 8, 9]

mixed = [[1, [2]], (3, 4, {5, 6}, 7), 8, "9"]              # numbers, strs, nested & mixed
list(flatten(mixed))
# [1, 2, 3, 4, 5, 6, 7, 8, '9']

Reference

  • This solution is modified from a recipe in Beazley, D. and B. Jones. Recipe 4.14, Python Cookbook 3rd Ed., O’Reilly Media Inc. Sebastopol, CA: 2013.
  • Found an earlier SO post, possibly the original demonstration.

回答 7

如果要展平不知道嵌套深度的数据结构,可以使用1iteration_utilities.deepflatten

>>> from iteration_utilities import deepflatten

>>> l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
>>> list(deepflatten(l, depth=1))
[1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> l = [[1, 2, 3], [4, [5, 6]], 7, [8, 9]]
>>> list(deepflatten(l))
[1, 2, 3, 4, 5, 6, 7, 8, 9]

它是一个生成器,因此您需要将结果list强制转换为或对其进行显式迭代。


如果只展平一个级别,并且每个项目本身都是可迭代的,则还可以使用iteration_utilities.flatten它本身只是一个薄包装itertools.chain.from_iterable

>>> from iteration_utilities import flatten
>>> l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
>>> list(flatten(l))
[1, 2, 3, 4, 5, 6, 7, 8, 9]

只是添加一些时间(基于NicoSchlömer的答案,其中不包括此答案中提供的功能):

这是一个对数对数图,可以容纳跨度很大的值。对于定性推理:越低越好。

研究结果表明,如果迭代只包含几个内部iterables然后sum将最快,但长期iterables只itertools.chain.from_iterableiteration_utilities.deepflatten或嵌套的理解与合理的性能itertools.chain.from_iterable是最快的(如已被尼科Schlömer注意到)。

from itertools import chain
from functools import reduce
from collections import Iterable  # or from collections.abc import Iterable
import operator
from iteration_utilities import deepflatten

def nested_list_comprehension(lsts):
    return [item for sublist in lsts for item in sublist]

def itertools_chain_from_iterable(lsts):
    return list(chain.from_iterable(lsts))

def pythons_sum(lsts):
    return sum(lsts, [])

def reduce_add(lsts):
    return reduce(lambda x, y: x + y, lsts)

def pylangs_flatten(lsts):
    return list(flatten(lsts))

def flatten(items):
    """Yield items from any nested iterable; see REF."""
    for x in items:
        if isinstance(x, Iterable) and not isinstance(x, (str, bytes)):
            yield from flatten(x)
        else:
            yield x

def reduce_concat(lsts):
    return reduce(operator.concat, lsts)

def iteration_utilities_deepflatten(lsts):
    return list(deepflatten(lsts, depth=1))


from simple_benchmark import benchmark

b = benchmark(
    [nested_list_comprehension, itertools_chain_from_iterable, pythons_sum, reduce_add,
     pylangs_flatten, reduce_concat, iteration_utilities_deepflatten],
    arguments={2**i: [[0]*5]*(2**i) for i in range(1, 13)},
    argument_name='number of inner lists'
)

b.plot()

1免责声明:我是该图书馆的作者

If you want to flatten a data-structure where you don’t know how deep it’s nested you could use iteration_utilities.deepflatten1

>>> from iteration_utilities import deepflatten

>>> l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
>>> list(deepflatten(l, depth=1))
[1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> l = [[1, 2, 3], [4, [5, 6]], 7, [8, 9]]
>>> list(deepflatten(l))
[1, 2, 3, 4, 5, 6, 7, 8, 9]

It’s a generator so you need to cast the result to a list or explicitly iterate over it.


To flatten only one level and if each of the items is itself iterable you can also use iteration_utilities.flatten which itself is just a thin wrapper around itertools.chain.from_iterable:

>>> from iteration_utilities import flatten
>>> l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
>>> list(flatten(l))
[1, 2, 3, 4, 5, 6, 7, 8, 9]

Just to add some timings (based on Nico Schlömer answer that didn’t include the function presented in this answer):

It’s a log-log plot to accommodate for the huge range of values spanned. For qualitative reasoning: Lower is better.

The results show that if the iterable contains only a few inner iterables then sum will be fastest, however for long iterables only the itertools.chain.from_iterable, iteration_utilities.deepflatten or the nested comprehension have reasonable performance with itertools.chain.from_iterable being the fastest (as already noticed by Nico Schlömer).

from itertools import chain
from functools import reduce
from collections import Iterable  # or from collections.abc import Iterable
import operator
from iteration_utilities import deepflatten

def nested_list_comprehension(lsts):
    return [item for sublist in lsts for item in sublist]

def itertools_chain_from_iterable(lsts):
    return list(chain.from_iterable(lsts))

def pythons_sum(lsts):
    return sum(lsts, [])

def reduce_add(lsts):
    return reduce(lambda x, y: x + y, lsts)

def pylangs_flatten(lsts):
    return list(flatten(lsts))

def flatten(items):
    """Yield items from any nested iterable; see REF."""
    for x in items:
        if isinstance(x, Iterable) and not isinstance(x, (str, bytes)):
            yield from flatten(x)
        else:
            yield x

def reduce_concat(lsts):
    return reduce(operator.concat, lsts)

def iteration_utilities_deepflatten(lsts):
    return list(deepflatten(lsts, depth=1))


from simple_benchmark import benchmark

b = benchmark(
    [nested_list_comprehension, itertools_chain_from_iterable, pythons_sum, reduce_add,
     pylangs_flatten, reduce_concat, iteration_utilities_deepflatten],
    arguments={2**i: [[0]*5]*(2**i) for i in range(1, 13)},
    argument_name='number of inner lists'
)

b.plot()

1 Disclaimer: I’m the author of that library


回答 8

我收回我的声明。总和不是赢家。尽管列表较小时速度更快。但是,列表较大时,性能会大大降低。

>>> timeit.Timer(
        '[item for sublist in l for item in sublist]',
        'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]] * 10000'
    ).timeit(100)
2.0440959930419922

sum版本仍在运行一分钟以上,尚未处理!

对于中型列表:

>>> timeit.Timer(
        '[item for sublist in l for item in sublist]',
        'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]] * 10'
    ).timeit()
20.126545906066895
>>> timeit.Timer(
        'reduce(lambda x,y: x+y,l)',
        'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]] * 10'
    ).timeit()
22.242258071899414
>>> timeit.Timer(
        'sum(l, [])',
        'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]] * 10'
    ).timeit()
16.449732065200806

使用小清单和时间:number = 1000000

>>> timeit.Timer(
        '[item for sublist in l for item in sublist]',
        'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]]'
    ).timeit()
2.4598159790039062
>>> timeit.Timer(
        'reduce(lambda x,y: x+y,l)',
        'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]]'
    ).timeit()
1.5289170742034912
>>> timeit.Timer(
        'sum(l, [])',
        'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]]'
    ).timeit()
1.0598428249359131

I take my statement back. sum is not the winner. Although it is faster when the list is small. But the performance degrades significantly with larger lists.

>>> timeit.Timer(
        '[item for sublist in l for item in sublist]',
        'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]] * 10000'
    ).timeit(100)
2.0440959930419922

The sum version is still running for more than a minute and it hasn’t done processing yet!

For medium lists:

>>> timeit.Timer(
        '[item for sublist in l for item in sublist]',
        'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]] * 10'
    ).timeit()
20.126545906066895
>>> timeit.Timer(
        'reduce(lambda x,y: x+y,l)',
        'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]] * 10'
    ).timeit()
22.242258071899414
>>> timeit.Timer(
        'sum(l, [])',
        'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]] * 10'
    ).timeit()
16.449732065200806

Using small lists and timeit: number=1000000

>>> timeit.Timer(
        '[item for sublist in l for item in sublist]',
        'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]]'
    ).timeit()
2.4598159790039062
>>> timeit.Timer(
        'reduce(lambda x,y: x+y,l)',
        'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]]'
    ).timeit()
1.5289170742034912
>>> timeit.Timer(
        'sum(l, [])',
        'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]]'
    ).timeit()
1.0598428249359131

回答 9

似乎与operator.add!当您将两个列表加在一起时,正确的术语是concat,而不是添加。operator.concat是您需要使用的。

如果您认为功能正常,那么就这么简单:

>>> from functools import reduce
>>> list2d = ((1, 2, 3), (4, 5, 6), (7,), (8, 9))
>>> reduce(operator.concat, list2d)
(1, 2, 3, 4, 5, 6, 7, 8, 9)

您会看到reduce尊重序列类型,因此在提供元组时,您会得到一个元组。让我们尝试一个列表:

>>> list2d = [[1, 2, 3],[4, 5, 6], [7], [8, 9]]
>>> reduce(operator.concat, list2d)
[1, 2, 3, 4, 5, 6, 7, 8, 9]

啊哈,您会得到一个清单。

性能如何:

>>> list2d = [[1, 2, 3],[4, 5, 6], [7], [8, 9]]
>>> %timeit list(itertools.chain.from_iterable(list2d))
1000000 loops, best of 3: 1.36 µs per loop

from_iterable相当快!但这是无法与相比的concat

>>> list2d = ((1, 2, 3),(4, 5, 6), (7,), (8, 9))
>>> %timeit reduce(operator.concat, list2d)
1000000 loops, best of 3: 492 ns per loop

There seems to be a confusion with operator.add! When you add two lists together, the correct term for that is concat, not add. operator.concat is what you need to use.

If you’re thinking functional, it is as easy as this::

>>> from functools import reduce
>>> list2d = ((1, 2, 3), (4, 5, 6), (7,), (8, 9))
>>> reduce(operator.concat, list2d)
(1, 2, 3, 4, 5, 6, 7, 8, 9)

You see reduce respects the sequence type, so when you supply a tuple, you get back a tuple. Let’s try with a list::

>>> list2d = [[1, 2, 3],[4, 5, 6], [7], [8, 9]]
>>> reduce(operator.concat, list2d)
[1, 2, 3, 4, 5, 6, 7, 8, 9]

Aha, you get back a list.

How about performance::

>>> list2d = [[1, 2, 3],[4, 5, 6], [7], [8, 9]]
>>> %timeit list(itertools.chain.from_iterable(list2d))
1000000 loops, best of 3: 1.36 µs per loop

from_iterable is pretty fast! But it’s no comparison to reduce with concat.

>>> list2d = ((1, 2, 3),(4, 5, 6), (7,), (8, 9))
>>> %timeit reduce(operator.concat, list2d)
1000000 loops, best of 3: 492 ns per loop

回答 10

为什么使用扩展?

reduce(lambda x, y: x+y, l)

这应该工作正常。

Why do you use extend?

reduce(lambda x, y: x+y, l)

This should work fine.


回答 11

考虑安装more_itertools软件包。

> pip install more_itertools

它附带了一个实现flattensource,来自itertools配方):

import more_itertools


lst = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
list(more_itertools.flatten(lst))
# [1, 2, 3, 4, 5, 6, 7, 8, 9]

从2.4版开始,您可以使用more_itertools.collapsesource,由abarnet提供)来展平更复杂,嵌套的可迭代对象。

lst = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
list(more_itertools.collapse(lst)) 
# [1, 2, 3, 4, 5, 6, 7, 8, 9]

lst = [[1, 2, 3], [[4, 5, 6]], [[[7]]], 8, 9]              # complex nesting
list(more_itertools.collapse(lst))
# [1, 2, 3, 4, 5, 6, 7, 8, 9]

Consider installing the more_itertools package.

> pip install more_itertools

It ships with an implementation for flatten (source, from the itertools recipes):

import more_itertools


lst = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
list(more_itertools.flatten(lst))
# [1, 2, 3, 4, 5, 6, 7, 8, 9]

As of version 2.4, you can flatten more complicated, nested iterables with more_itertools.collapse (source, contributed by abarnet).

lst = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
list(more_itertools.collapse(lst)) 
# [1, 2, 3, 4, 5, 6, 7, 8, 9]

lst = [[1, 2, 3], [[4, 5, 6]], [[[7]]], 8, 9]              # complex nesting
list(more_itertools.collapse(lst))
# [1, 2, 3, 4, 5, 6, 7, 8, 9]

回答 12

您的函数不起作用的原因是因为扩展名扩展了数组就位并且不返回它。您仍然可以使用以下方法从lambda返回x:

reduce(lambda x,y: x.extend(y) or x, l)

注意:扩展比列表上的+更有效。

The reason your function didn’t work is because the extend extends an array in-place and doesn’t return it. You can still return x from lambda, using something like this:

reduce(lambda x,y: x.extend(y) or x, l)

Note: extend is more efficient than + on lists.


回答 13

def flatten(l, a):
    for i in l:
        if isinstance(i, list):
            flatten(i, a)
        else:
            a.append(i)
    return a

print(flatten([[[1, [1,1, [3, [4,5,]]]], 2, 3], [4, 5],6], []))

# [1, 1, 1, 3, 4, 5, 2, 3, 4, 5, 6]
def flatten(l, a):
    for i in l:
        if isinstance(i, list):
            flatten(i, a)
        else:
            a.append(i)
    return a

print(flatten([[[1, [1,1, [3, [4,5,]]]], 2, 3], [4, 5],6], []))

# [1, 1, 1, 3, 4, 5, 2, 3, 4, 5, 6]

回答 14

递归版本

x = [1,2,[3,4],[5,[6,[7]]],8,9,[10]]

def flatten_list(k):
    result = list()
    for i in k:
        if isinstance(i,list):

            #The isinstance() function checks if the object (first argument) is an 
            #instance or subclass of classinfo class (second argument)

            result.extend(flatten_list(i)) #Recursive call
        else:
            result.append(i)
    return result

flatten_list(x)
#result = [1,2,3,4,5,6,7,8,9,10]

Recursive version

x = [1,2,[3,4],[5,[6,[7]]],8,9,[10]]

def flatten_list(k):
    result = list()
    for i in k:
        if isinstance(i,list):

            #The isinstance() function checks if the object (first argument) is an 
            #instance or subclass of classinfo class (second argument)

            result.extend(flatten_list(i)) #Recursive call
        else:
            result.append(i)
    return result

flatten_list(x)
#result = [1,2,3,4,5,6,7,8,9,10]

回答 15

matplotlib.cbook.flatten() 即使嵌套列表比示例嵌套更深,它也适用于嵌套列表。

import matplotlib
l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
print(list(matplotlib.cbook.flatten(l)))
l2 = [[1, 2, 3], [4, 5, 6], [7], [8, [9, 10, [11, 12, [13]]]]]
print list(matplotlib.cbook.flatten(l2))

结果:

[1, 2, 3, 4, 5, 6, 7, 8, 9]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

这比下划线._。flatten快18倍:

Average time over 1000 trials of matplotlib.cbook.flatten: 2.55e-05 sec
Average time over 1000 trials of underscore._.flatten: 4.63e-04 sec
(time for underscore._)/(time for matplotlib.cbook) = 18.1233394636

matplotlib.cbook.flatten() will work for nested lists even if they nest more deeply than the example.

import matplotlib
l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
print(list(matplotlib.cbook.flatten(l)))
l2 = [[1, 2, 3], [4, 5, 6], [7], [8, [9, 10, [11, 12, [13]]]]]
print list(matplotlib.cbook.flatten(l2))

Result:

[1, 2, 3, 4, 5, 6, 7, 8, 9]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

This is 18x faster than underscore._.flatten:

Average time over 1000 trials of matplotlib.cbook.flatten: 2.55e-05 sec
Average time over 1000 trials of underscore._.flatten: 4.63e-04 sec
(time for underscore._)/(time for matplotlib.cbook) = 18.1233394636

回答 16

在处理基于文本的可变长度列表时,可接受的答案对我不起作用。这是对我有用的另一种方法。

l = ['aaa', 'bb', 'cccccc', ['xx', 'yyyyyyy']]

接受的答案无效

flat_list = [item for sublist in l for item in sublist]
print(flat_list)
['a', 'a', 'a', 'b', 'b', 'c', 'c', 'c', 'c', 'c', 'c', 'xx', 'yyyyyyy']

新提出的解决方案,没有工作对我来说:

flat_list = []
_ = [flat_list.extend(item) if isinstance(item, list) else flat_list.append(item) for item in l if item]
print(flat_list)
['aaa', 'bb', 'cccccc', 'xx', 'yyyyyyy']

The accepted answer did not work for me when dealing with text-based lists of variable lengths. Here is an alternate approach that did work for me.

l = ['aaa', 'bb', 'cccccc', ['xx', 'yyyyyyy']]

Accepted answer that did not work:

flat_list = [item for sublist in l for item in sublist]
print(flat_list)
['a', 'a', 'a', 'b', 'b', 'c', 'c', 'c', 'c', 'c', 'c', 'xx', 'yyyyyyy']

New proposed solution that did work for me:

flat_list = []
_ = [flat_list.extend(item) if isinstance(item, list) else flat_list.append(item) for item in l if item]
print(flat_list)
['aaa', 'bb', 'cccccc', 'xx', 'yyyyyyy']

回答 17

上面的Anil函数的一个坏功能是,它要求用户始终手动将第二个参数指定为空列表[]。相反,这应该是默认设置。由于Python对象的工作方式,这些对象应在函数内部而不是参数中设置。

这是一个工作功能:

def list_flatten(l, a=None):
    #check a
    if a is None:
        #initialize with empty list
        a = []

    for i in l:
        if isinstance(i, list):
            list_flatten(i, a)
        else:
            a.append(i)
    return a

测试:

In [2]: lst = [1, 2, [3], [[4]],[5,[6]]]

In [3]: lst
Out[3]: [1, 2, [3], [[4]], [5, [6]]]

In [11]: list_flatten(lst)
Out[11]: [1, 2, 3, 4, 5, 6]

An bad feature of Anil’s function above is that it requires the user to always manually specify the second argument to be an empty list []. This should instead be a default. Due to the way Python objects work, these should be set inside the function, not in the arguments.

Here’s a working function:

def list_flatten(l, a=None):
    #check a
    if a is None:
        #initialize with empty list
        a = []

    for i in l:
        if isinstance(i, list):
            list_flatten(i, a)
        else:
            a.append(i)
    return a

Testing:

In [2]: lst = [1, 2, [3], [[4]],[5,[6]]]

In [3]: lst
Out[3]: [1, 2, [3], [[4]], [5, [6]]]

In [11]: list_flatten(lst)
Out[11]: [1, 2, 3, 4, 5, 6]

回答 18

以下对我来说似乎最简单:

>>> import numpy as np
>>> l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
>>> print (np.concatenate(l))
[1 2 3 4 5 6 7 8 9]

Following seem simplest to me:

>>> import numpy as np
>>> l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
>>> print (np.concatenate(l))
[1 2 3 4 5 6 7 8 9]

回答 19

也可以使用NumPy的flat

import numpy as np
list(np.array(l).flat)

编辑11/02/2016:仅当子列表具有相同尺寸时才可用。

One can also use NumPy’s flat:

import numpy as np
list(np.array(l).flat)

Edit 11/02/2016: Only works when sublists have identical dimensions.


回答 20

您可以使用numpy:
flat_list = list(np.concatenate(list_of_list))

You can use numpy :
flat_list = list(np.concatenate(list_of_list))


回答 21

如果您愿意放弃一点速度以获得更干净的外观,则可以使用numpy.concatenate().tolist()numpy.concatenate().ravel().tolist()

import numpy

l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]] * 99

%timeit numpy.concatenate(l).ravel().tolist()
1000 loops, best of 3: 313 µs per loop

%timeit numpy.concatenate(l).tolist()
1000 loops, best of 3: 312 µs per loop

%timeit [item for sublist in l for item in sublist]
1000 loops, best of 3: 31.5 µs per loop

您可以在docs numpy.concatenatenumpy.ravel中找到更多信息

If you are willing to give up a tiny amount of speed for a cleaner look, then you could use numpy.concatenate().tolist() or numpy.concatenate().ravel().tolist():

import numpy

l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]] * 99

%timeit numpy.concatenate(l).ravel().tolist()
1000 loops, best of 3: 313 µs per loop

%timeit numpy.concatenate(l).tolist()
1000 loops, best of 3: 312 µs per loop

%timeit [item for sublist in l for item in sublist]
1000 loops, best of 3: 31.5 µs per loop

You can find out more here in the docs numpy.concatenate and numpy.ravel


回答 22

我找到的最快解决方案(无论如何都是大型列表):

import numpy as np
#turn list into an array and flatten()
np.array(l).flatten()

做完了!您当然可以通过执行list(l)将其转换为列表

Fastest solution I have found (for large list anyway):

import numpy as np
#turn list into an array and flatten()
np.array(l).flatten()

Done! You can of course turn it back into a list by executing list(l)


回答 23

underscore.py包装风扇的简单代码

from underscore import _
_.flatten([[1, 2, 3], [4, 5, 6], [7], [8, 9]])
# [1, 2, 3, 4, 5, 6, 7, 8, 9]

它解决了所有扁平化问题(无列表项或复杂的嵌套)

from underscore import _
# 1 is none list item
# [2, [3]] is complex nesting
_.flatten([1, [2, [3]], [4, 5, 6], [7], [8, 9]])
# [1, 2, 3, 4, 5, 6, 7, 8, 9]

您可以underscore.py使用pip 安装

pip install underscore.py

Simple code for underscore.py package fan

from underscore import _
_.flatten([[1, 2, 3], [4, 5, 6], [7], [8, 9]])
# [1, 2, 3, 4, 5, 6, 7, 8, 9]

It solves all flatten problems (none list item or complex nesting)

from underscore import _
# 1 is none list item
# [2, [3]] is complex nesting
_.flatten([1, [2, [3]], [4, 5, 6], [7], [8, 9]])
# [1, 2, 3, 4, 5, 6, 7, 8, 9]

You can install underscore.py with pip

pip install underscore.py

回答 24

def flatten(alist):
    if alist == []:
        return []
    elif type(alist) is not list:
        return [alist]
    else:
        return flatten(alist[0]) + flatten(alist[1:])
def flatten(alist):
    if alist == []:
        return []
    elif type(alist) is not list:
        return [alist]
    else:
        return flatten(alist[0]) + flatten(alist[1:])

回答 25

注意:以下内容适用于Python 3.3+,因为它使用yield_fromsix也是第三方软件包,尽管它很稳定。或者,您可以使用sys.version


在的情况下obj = [[1, 2,], [3, 4], [5, 6]],这里的所有解决方案都不错,包括列表理解和itertools.chain.from_iterable

但是,请考虑以下稍微复杂的情况:

>>> obj = [[1, 2, 3], [4, 5], 6, 'abc', [7], [8, [9, 10]]]

这里有几个问题:

  • 一个元素6只是一个标量。它是不可迭代的,因此上述路由将在此处失败。
  • 其中一个要素,'abc'技术上可迭代(所有str s为)。但是,在行与行之间进行一点阅读时,您并不想这样处理-您希望将其视为单个元素。
  • 最后一个元素[8, [9, 10]]本身就是嵌套的可迭代对象。基本列表理解,chain.from_iterable仅提取“下一级”。

您可以通过以下方法对此进行补救:

>>> from collections import Iterable
>>> from six import string_types

>>> def flatten(obj):
...     for i in obj:
...         if isinstance(i, Iterable) and not isinstance(i, string_types):
...             yield from flatten(i)
...         else:
...             yield i


>>> list(flatten(obj))
[1, 2, 3, 4, 5, 6, 'abc', 7, 8, 9, 10]

在这里,您检查子元素(1)是否可通过Iterable,ABC从进行迭代itertools,但还要确保(2)元素不是 “字符串状”的。

Note: Below applies to Python 3.3+ because it uses yield_from. six is also a third-party package, though it is stable. Alternately, you could use sys.version.


In the case of obj = [[1, 2,], [3, 4], [5, 6]], all of the solutions here are good, including list comprehension and itertools.chain.from_iterable.

However, consider this slightly more complex case:

>>> obj = [[1, 2, 3], [4, 5], 6, 'abc', [7], [8, [9, 10]]]

There are several problems here:

  • One element, 6, is just a scalar; it’s not iterable, so the above routes will fail here.
  • One element, 'abc', is technically iterable (all strs are). However, reading between the lines a bit, you don’t want to treat it as such–you want to treat it as a single element.
  • The final element, [8, [9, 10]] is itself a nested iterable. Basic list comprehension and chain.from_iterable only extract “1 level down.”

You can remedy this as follows:

>>> from collections import Iterable
>>> from six import string_types

>>> def flatten(obj):
...     for i in obj:
...         if isinstance(i, Iterable) and not isinstance(i, string_types):
...             yield from flatten(i)
...         else:
...             yield i


>>> list(flatten(obj))
[1, 2, 3, 4, 5, 6, 'abc', 7, 8, 9, 10]

Here, you check that the sub-element (1) is iterable with Iterable, an ABC from itertools, but also want to ensure that (2) the element is not “string-like.”


回答 26

flat_list = []
for i in list_of_list:
    flat_list+=i

该代码也可以很好地工作,因为它会一直扩展列表。虽然非常相似,但是只有一个for循环。因此,它比添加2 for循环具有更少的复杂性。

flat_list = []
for i in list_of_list:
    flat_list+=i

This Code also works fine as it just extend the list all the way. Although it is much similar but only have one for loop. So It have less complexity than adding 2 for loops.


回答 27

from nltk import flatten

l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
flatten(l)

这种解决方案相对于大多数其他解决方案的优势在于,如果您有类似以下的列表:

l = [1, [2, 3], [4, 5, 6], [7], [8, 9]]

虽然其他大多数解决方案都会引发错误,但此解决方案可以解决这些问题。

from nltk import flatten

l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
flatten(l)

The advantage of this solution over most others here is that if you have a list like:

l = [1, [2, 3], [4, 5, 6], [7], [8, 9]]

while most other solutions throw an error this solution handles them.


回答 28

这可能不是最有效的方法,但我认为应该放一个衬里(实际上是两个衬里)。两种版本均可在任意层次的嵌套列表上使用,并利用语言功能(Python3.5)和递归。

def make_list_flat (l):
    flist = []
    flist.extend ([l]) if (type (l) is not list) else [flist.extend (make_list_flat (e)) for e in l]
    return flist

a = [[1, 2], [[[[3, 4, 5], 6]]], 7, [8, [9, [10, 11], 12, [13, 14, [15, [[16, 17], 18]]]]]]
flist = make_list_flat(a)
print (flist)

输出是

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]

这以深度优先的方式工作。递归向下进行,直到找到一个非列表元素,然后扩展局部变量flist,然后将其回滚到父变量。每当flist返回时,它就会扩展到flist列表理解中的父级。因此,从根本上返回一个平面列表。

上面的代码创建了几个本地列表并返回它们,用于扩展父级列表。我认为解决此问题的方法可能是创建gloabl flist,如下所示。

a = [[1, 2], [[[[3, 4, 5], 6]]], 7, [8, [9, [10, 11], 12, [13, 14, [15, [[16, 17], 18]]]]]]
flist = []
def make_list_flat (l):
    flist.extend ([l]) if (type (l) is not list) else [make_list_flat (e) for e in l]

make_list_flat(a)
print (flist)

输出再次

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]

尽管目前我不确定效率。

This may not be the most efficient way but I thought to put a one-liner (actually a two-liner). Both versions will work on arbitrary hierarchy nested lists, and exploits language features (Python3.5) and recursion.

def make_list_flat (l):
    flist = []
    flist.extend ([l]) if (type (l) is not list) else [flist.extend (make_list_flat (e)) for e in l]
    return flist

a = [[1, 2], [[[[3, 4, 5], 6]]], 7, [8, [9, [10, 11], 12, [13, 14, [15, [[16, 17], 18]]]]]]
flist = make_list_flat(a)
print (flist)

The output is

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]

This works in a depth first manner. The recursion goes down until it finds a non-list element, then extends the local variable flist and then rolls back it to the parent. Whenever flist is returned, it is extended to the parent’s flist in the list comprehension. Therefore, at the root, a flat list is returned.

The above one creates several local lists and returns them which are used to extend the parent’s list. I think the way around for this may be creating a gloabl flist, like below.

a = [[1, 2], [[[[3, 4, 5], 6]]], 7, [8, [9, [10, 11], 12, [13, 14, [15, [[16, 17], 18]]]]]]
flist = []
def make_list_flat (l):
    flist.extend ([l]) if (type (l) is not list) else [make_list_flat (e) for e in l]

make_list_flat(a)
print (flist)

The output is again

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]

Although I am not sure at this time about the efficiency.


回答 29

适用于整数的异质和均质列表的另一种异常方法:

from typing import List


def flatten(l: list) -> List[int]:
    """Flatten an arbitrary deep nested list of lists of integers.

    Examples:
        >>> flatten([1, 2, [1, [10]]])
        [1, 2, 1, 10]

    Args:
        l: Union[l, Union[int, List[int]]

    Returns:
        Flatted list of integer
    """
    return [int(i.strip('[ ]')) for i in str(l).split(',')]

Another unusual approach that works for hetero- and homogeneous lists of integers:

from typing import List


def flatten(l: list) -> List[int]:
    """Flatten an arbitrary deep nested list of lists of integers.

    Examples:
        >>> flatten([1, 2, [1, [10]]])
        [1, 2, 1, 10]

    Args:
        l: Union[l, Union[int, List[int]]

    Returns:
        Flatted list of integer
    """
    return [int(i.strip('[ ]')) for i in str(l).split(',')]