问题:如何从集合中检索元素而不删除它?
假设以下内容:
>>> s = set([1, 2, 3])
如何获得的值(任意值)出来s
而不做s.pop()
?我想将该项目保留在集合中,直到我确定可以删除它为止-只有在异步调用另一个主机后才能确定。
快速又肮脏:
>>> elem = s.pop()
>>> s.add(elem)
但是您知道更好的方法吗?理想的情况是恒定时间。
Suppose the following:
>>> s = set([1, 2, 3])
How do I get a value (any value) out of s
without doing s.pop()
? I want to leave the item in the set until I am sure I can remove it – something I can only be sure of after an asynchronous call to another host.
Quick and dirty:
>>> elem = s.pop()
>>> s.add(elem)
But do you know of a better way? Ideally in constant time.
回答 0
不需要复制整个集合的两个选项:
for e in s:
break
# e is now an element from s
要么…
e = next(iter(s))
但是总的来说,集合不支持索引或切片。
Two options that don’t require copying the whole set:
for e in s:
break
# e is now an element from s
Or…
e = next(iter(s))
But in general, sets don’t support indexing or slicing.
回答 1
最少的代码是:
>>> s = set([1, 2, 3])
>>> list(s)[0]
1
显然,这将创建一个新列表,其中包含该集合的每个成员,因此如果您的集合很大,就不会很大。
Least code would be:
>>> s = set([1, 2, 3])
>>> list(s)[0]
1
Obviously this would create a new list which contains each member of the set, so not great if your set is very large.
回答 2
我想知道这些功能如何在不同的集合上执行,所以我做了一个基准测试:
from random import sample
def ForLoop(s):
for e in s:
break
return e
def IterNext(s):
return next(iter(s))
def ListIndex(s):
return list(s)[0]
def PopAdd(s):
e = s.pop()
s.add(e)
return e
def RandomSample(s):
return sample(s, 1)
def SetUnpacking(s):
e, *_ = s
return e
from simple_benchmark import benchmark
b = benchmark([ForLoop, IterNext, ListIndex, PopAdd, RandomSample, SetUnpacking],
{2**i: set(range(2**i)) for i in range(1, 20)},
argument_name='set size',
function_aliases={first: 'First'})
b.plot()
该图清楚地表明,一些方法(RandomSample
,SetUnpacking
和ListIndex
)依赖于集的大小,并应在一般情况下可避免(至少在性能可能是重要的)。正如其他答案已经显示的那样,最快的方法是ForLoop
。
但是,只要使用恒定时间方法之一,性能差异就可以忽略不计。
iteration_utilities
(免责声明:我是作者)包含此用例的便捷功能first
:
>>> from iteration_utilities import first
>>> first({1,2,3,4})
1
我也将其包含在上述基准中。它可以与其他两个“快速”解决方案竞争,但是两者之间的差异并不大。
I wondered how the functions will perform for different sets, so I did a benchmark:
from random import sample
def ForLoop(s):
for e in s:
break
return e
def IterNext(s):
return next(iter(s))
def ListIndex(s):
return list(s)[0]
def PopAdd(s):
e = s.pop()
s.add(e)
return e
def RandomSample(s):
return sample(s, 1)
def SetUnpacking(s):
e, *_ = s
return e
from simple_benchmark import benchmark
b = benchmark([ForLoop, IterNext, ListIndex, PopAdd, RandomSample, SetUnpacking],
{2**i: set(range(2**i)) for i in range(1, 20)},
argument_name='set size',
function_aliases={first: 'First'})
b.plot()
This plot clearly shows that some approaches (RandomSample
, SetUnpacking
and ListIndex
) depend on the size of the set and should be avoided in the general case (at least if performance might be important). As already shown by the other answers the fastest way is ForLoop
.
However as long as one of the constant time approaches is used the performance difference will be negligible.
iteration_utilities
(Disclaimer: I’m the author) contains a convenience function for this use-case: first
:
>>> from iteration_utilities import first
>>> first({1,2,3,4})
1
I also included it in the benchmark above. It can compete with the other two “fast” solutions but the difference isn’t much either way.
回答 3
tl; dr
for first_item in muh_set: break
仍然是Python 3.x中的最佳方法。诅咒你,圭多。
do这样做
欢迎使用从wr推断出来的另一组Python 3.x计时。出色的特定于Python 2.x的响应。与AChampion同样有用的特定于Python 3.x的响应不同,下面的时间安排还建议了上面提到的时间异常解决方案,包括:
欢乐代码段
开启,收听,定时:
from timeit import Timer
stats = [
"for i in range(1000): \n\tfor x in s: \n\t\tbreak",
"for i in range(1000): next(iter(s))",
"for i in range(1000): s.add(s.pop())",
"for i in range(1000): list(s)[0]",
"for i in range(1000): random.sample(s, 1)",
]
for stat in stats:
t = Timer(stat, setup="import random\ns=set(range(100))")
try:
print("Time for %s:\t %f"%(stat, t.timeit(number=1000)))
except:
t.print_exc()
快速过时的计时
看哪!按最快到最慢的片段排序:
$ ./test_get.py
Time for for i in range(1000):
for x in s:
break: 0.249871
Time for for i in range(1000): next(iter(s)): 0.526266
Time for for i in range(1000): s.add(s.pop()): 0.658832
Time for for i in range(1000): list(s)[0]: 4.117106
Time for for i in range(1000): random.sample(s, 1): 21.851104
全家人的面部植物
毫不奇怪,手动迭代的速度至少是下一个最快解决方案的两倍。尽管与Bad Old Python 2.x相比(以前的手动迭代速度至少快四倍),差距有所减小,但PPE 20狂热者对我而言最冗长的解决方案是最好的解决方案感到失望。至少将一个集转换为一个列表以仅提取该集的第一个元素是预期的那样可怕。感谢Guido,愿他的光芒继续指导我们。
令人惊讶的是,基于RNG的解决方案绝对可怕。列表转换不好,但random
确实会带来糟糕的结果。对于随机数上帝来说如此之多。
我只是希望那些无定形set.get_first()
的人已经为我们准备了一种方法。如果您正在阅读本文,他们:“请。做点什么。”
tl;dr
for first_item in muh_set: break
remains the optimal approach in Python 3.x. Curse you, Guido.
y u do this
Welcome to yet another set of Python 3.x timings, extrapolated from wr.‘s excellent Python 2.x-specific response. Unlike AChampion‘s equally helpful Python 3.x-specific response, the timings below also time outlier solutions suggested above – including:
Code Snippets for Great Joy
Turn on, tune in, time it:
from timeit import Timer
stats = [
"for i in range(1000): \n\tfor x in s: \n\t\tbreak",
"for i in range(1000): next(iter(s))",
"for i in range(1000): s.add(s.pop())",
"for i in range(1000): list(s)[0]",
"for i in range(1000): random.sample(s, 1)",
]
for stat in stats:
t = Timer(stat, setup="import random\ns=set(range(100))")
try:
print("Time for %s:\t %f"%(stat, t.timeit(number=1000)))
except:
t.print_exc()
Quickly Obsoleted Timeless Timings
Behold! Ordered by fastest to slowest snippets:
$ ./test_get.py
Time for for i in range(1000):
for x in s:
break: 0.249871
Time for for i in range(1000): next(iter(s)): 0.526266
Time for for i in range(1000): s.add(s.pop()): 0.658832
Time for for i in range(1000): list(s)[0]: 4.117106
Time for for i in range(1000): random.sample(s, 1): 21.851104
Faceplants for the Whole Family
Unsurprisingly, manual iteration remains at least twice as fast as the next fastest solution. Although the gap has decreased from the Bad Old Python 2.x days (in which manual iteration was at least four times as fast), it disappoints the PEP 20 zealot in me that the most verbose solution is the best. At least converting a set into a list just to extract the first element of the set is as horrible as expected. Thank Guido, may his light continue to guide us.
Surprisingly, the RNG-based solution is absolutely horrible. List conversion is bad, but random
really takes the awful-sauce cake. So much for the Random Number God.
I just wish the amorphous They would PEP up a set.get_first()
method for us already. If you’re reading this, They: “Please. Do something.”
回答 4
为了提供不同方法背后的一些时序图,请考虑以下代码。 get()是我自定义添加到Python的setobject.c中,只是一个pop()而没有删除该元素。
from timeit import *
stats = ["for i in xrange(1000): iter(s).next() ",
"for i in xrange(1000): \n\tfor x in s: \n\t\tbreak",
"for i in xrange(1000): s.add(s.pop()) ",
"for i in xrange(1000): s.get() "]
for stat in stats:
t = Timer(stat, setup="s=set(range(100))")
try:
print "Time for %s:\t %f"%(stat, t.timeit(number=1000))
except:
t.print_exc()
输出为:
$ ./test_get.py
Time for for i in xrange(1000): iter(s).next() : 0.433080
Time for for i in xrange(1000):
for x in s:
break: 0.148695
Time for for i in xrange(1000): s.add(s.pop()) : 0.317418
Time for for i in xrange(1000): s.get() : 0.146673
这意味着for / break解决方案是最快的(有时比自定义get()解决方案更快)。
To provide some timing figures behind the different approaches, consider the following code. The get() is my custom addition to Python’s setobject.c, being just a pop() without removing the element.
from timeit import *
stats = ["for i in xrange(1000): iter(s).next() ",
"for i in xrange(1000): \n\tfor x in s: \n\t\tbreak",
"for i in xrange(1000): s.add(s.pop()) ",
"for i in xrange(1000): s.get() "]
for stat in stats:
t = Timer(stat, setup="s=set(range(100))")
try:
print "Time for %s:\t %f"%(stat, t.timeit(number=1000))
except:
t.print_exc()
The output is:
$ ./test_get.py
Time for for i in xrange(1000): iter(s).next() : 0.433080
Time for for i in xrange(1000):
for x in s:
break: 0.148695
Time for for i in xrange(1000): s.add(s.pop()) : 0.317418
Time for for i in xrange(1000): s.get() : 0.146673
This means that the for/break solution is the fastest (sometimes faster than the custom get() solution).
回答 5
由于您需要一个随机元素,因此也可以使用:
>>> import random
>>> s = set([1,2,3])
>>> random.sample(s, 1)
[2]
该文档似乎并未提及的性能random.sample
。从包含大量列表和大量集合的非常快速的实证检验来看,列表似乎是恒定时间,但集合却并非如此。同样,对集合的迭代也不是随机的。顺序不确定,但可以预测:
>>> list(set(range(10))) == range(10)
True
如果随机性很重要,并且您需要在恒定时间内(大量集合)使用一堆元素,那么我会先使用random.sample
并转换为列表:
>>> lst = list(s) # once, O(len(s))?
...
>>> e = random.sample(lst, 1)[0] # constant time
Since you want a random element, this will also work:
>>> import random
>>> s = set([1,2,3])
>>> random.sample(s, 1)
[2]
The documentation doesn’t seem to mention performance of random.sample
. From a really quick empirical test with a huge list and a huge set, it seems to be constant time for a list but not for the set. Also, iteration over a set isn’t random; the order is undefined but predictable:
>>> list(set(range(10))) == range(10)
True
If randomness is important and you need a bunch of elements in constant time (large sets), I’d use random.sample
and convert to a list first:
>>> lst = list(s) # once, O(len(s))?
...
>>> e = random.sample(lst, 1)[0] # constant time
回答 6
似乎是最紧凑的(6个符号),但是获得集合元素的方法很慢(由PEP 3132实现):
e,*_=s
在Python 3.5+中,您还可以使用以下7符号表达式(感谢PEP 448):
[*s][0]
这两种选择在我的机器上都比for循环方法慢大约1000倍。
Seemingly the most compact (6 symbols) though very slow way to get a set element (made possible by PEP 3132):
e,*_=s
With Python 3.5+ you can also use this 7-symbol expression (thanks to PEP 448):
[*s][0]
Both options are roughly 1000 times slower on my machine than the for-loop method.
回答 7
我使用编写的实用程序函数。它的名称有点误导,因为它暗示它可能是随机物品或类似物品。
def anyitem(iterable):
try:
return iter(iterable).next()
except StopIteration:
return None
I use a utility function I wrote. Its name is somewhat misleading because it kind of implies it might be a random item or something like that.
def anyitem(iterable):
try:
return iter(iterable).next()
except StopIteration:
return None
回答 8
在@wr之后。帖子,我得到类似的结果(对于Python3.5)
from timeit import *
stats = ["for i in range(1000): next(iter(s))",
"for i in range(1000): \n\tfor x in s: \n\t\tbreak",
"for i in range(1000): s.add(s.pop())"]
for stat in stats:
t = Timer(stat, setup="s=set(range(100000))")
try:
print("Time for %s:\t %f"%(stat, t.timeit(number=1000)))
except:
t.print_exc()
输出:
Time for for i in range(1000): next(iter(s)): 0.205888
Time for for i in range(1000):
for x in s:
break: 0.083397
Time for for i in range(1000): s.add(s.pop()): 0.226570
但是,在更改基础集(例如,调用remove()
)时,对于可迭代的示例(for
,iter
)来说效果很差:
from timeit import *
stats = ["while s:\n\ta = next(iter(s))\n\ts.remove(a)",
"while s:\n\tfor x in s: break\n\ts.remove(x)",
"while s:\n\tx=s.pop()\n\ts.add(x)\n\ts.remove(x)"]
for stat in stats:
t = Timer(stat, setup="s=set(range(100000))")
try:
print("Time for %s:\t %f"%(stat, t.timeit(number=1000)))
except:
t.print_exc()
结果是:
Time for while s:
a = next(iter(s))
s.remove(a): 2.938494
Time for while s:
for x in s: break
s.remove(x): 2.728367
Time for while s:
x=s.pop()
s.add(x)
s.remove(x): 0.030272
Following @wr. post, I get similar results (for Python3.5)
from timeit import *
stats = ["for i in range(1000): next(iter(s))",
"for i in range(1000): \n\tfor x in s: \n\t\tbreak",
"for i in range(1000): s.add(s.pop())"]
for stat in stats:
t = Timer(stat, setup="s=set(range(100000))")
try:
print("Time for %s:\t %f"%(stat, t.timeit(number=1000)))
except:
t.print_exc()
Output:
Time for for i in range(1000): next(iter(s)): 0.205888
Time for for i in range(1000):
for x in s:
break: 0.083397
Time for for i in range(1000): s.add(s.pop()): 0.226570
However, when changing the underlying set (e.g. call to remove()
) things go badly for the iterable examples (for
, iter
):
from timeit import *
stats = ["while s:\n\ta = next(iter(s))\n\ts.remove(a)",
"while s:\n\tfor x in s: break\n\ts.remove(x)",
"while s:\n\tx=s.pop()\n\ts.add(x)\n\ts.remove(x)"]
for stat in stats:
t = Timer(stat, setup="s=set(range(100000))")
try:
print("Time for %s:\t %f"%(stat, t.timeit(number=1000)))
except:
t.print_exc()
Results in:
Time for while s:
a = next(iter(s))
s.remove(a): 2.938494
Time for while s:
for x in s: break
s.remove(x): 2.728367
Time for while s:
x=s.pop()
s.add(x)
s.remove(x): 0.030272
回答 9
我通常对小型馆藏所做的是创建这样的解析器/转换器方法
def convertSetToList(setName):
return list(setName)
然后我可以使用新列表并按索引号访问
userFields = convertSetToList(user)
name = request.json[userFields[0]]
作为列表,您将拥有可能需要使用的所有其他方法
What I usually do for small collections is to create kind of parser/converter method like this
def convertSetToList(setName):
return list(setName)
Then I can use the new list and access by index number
userFields = convertSetToList(user)
name = request.json[userFields[0]]
As a list you will have all the other methods that you may need to work with
回答 10
怎么s.copy().pop()
样 我尚未计时,但它应该可以正常工作,而且很简单。但是,它适用于小型集,因为它可以复制整个集。
How about s.copy().pop()
? I haven’t timed it, but it should work and it’s simple. It works best for small sets however, as it copies the whole set.
回答 11
另一种选择是将字典与不需要的值一起使用。例如,
poor_man_set = {}
poor_man_set[1] = None
poor_man_set[2] = None
poor_man_set[3] = None
...
您可以将键视为一组,但它们只是一个数组:
keys = poor_man_set.keys()
print "Some key = %s" % keys[0]
这种选择的副作用是您的代码将与较旧set
的Python 早期版本向后兼容。这也许不是最佳答案,但这是另一种选择。
编辑:您甚至可以执行以下操作来隐藏使用字典而不是数组或集合的事实:
poor_man_set = {}
poor_man_set[1] = None
poor_man_set[2] = None
poor_man_set[3] = None
poor_man_set = poor_man_set.keys()
Another option is to use a dictionary with values you don’t care about. E.g.,
poor_man_set = {}
poor_man_set[1] = None
poor_man_set[2] = None
poor_man_set[3] = None
...
You can treat the keys as a set except that they’re just an array:
keys = poor_man_set.keys()
print "Some key = %s" % keys[0]
A side effect of this choice is that your code will be backwards compatible with older, pre-set
versions of Python. It’s maybe not the best answer but it’s another option.
Edit: You can even do something like this to hide the fact that you used a dict instead of an array or set:
poor_man_set = {}
poor_man_set[1] = None
poor_man_set[2] = None
poor_man_set[3] = None
poor_man_set = poor_man_set.keys()
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。