问题:如何使用python / numpy计算百分位数?

是否有一种方便的方法来计算序列或一维numpy数组的百分位数?

我正在寻找类似于Excel的百分位数功能的东西。

我查看了NumPy的统计资料参考,但找不到。我只能找到中位数(第50个百分位数),但没有更具体的内容。

Is there a convenient way to calculate percentiles for a sequence or single-dimensional numpy array?

I am looking for something similar to Excel’s percentile function.

I looked in NumPy’s statistics reference, and couldn’t find this. All I could find is the median (50th percentile), but not something more specific.


回答 0

您可能对SciPy Stats软件包感兴趣。它具有您需要的百分位数功能和许多其他统计功能。

percentile() numpy太。

import numpy as np
a = np.array([1,2,3,4,5])
p = np.percentile(a, 50) # return 50th percentile, e.g median.
print p
3.0

这张票使我相信他们不会percentile()很快集成到numpy中。

You might be interested in the SciPy Stats package. It has the percentile function you’re after and many other statistical goodies.

percentile() is available in numpy too.

import numpy as np
a = np.array([1,2,3,4,5])
p = np.percentile(a, 50) # return 50th percentile, e.g median.
print p
3.0

This ticket leads me to believe they won’t be integrating percentile() into numpy anytime soon.


回答 1

顺便说一句,有一个纯Python实现的百分位数功能,以防万一不想依赖scipy。该函数复制如下:

## {{{ http://code.activestate.com/recipes/511478/ (r1)
import math
import functools

def percentile(N, percent, key=lambda x:x):
    """
    Find the percentile of a list of values.

    @parameter N - is a list of values. Note N MUST BE already sorted.
    @parameter percent - a float value from 0.0 to 1.0.
    @parameter key - optional key function to compute value from each element of N.

    @return - the percentile of the values
    """
    if not N:
        return None
    k = (len(N)-1) * percent
    f = math.floor(k)
    c = math.ceil(k)
    if f == c:
        return key(N[int(k)])
    d0 = key(N[int(f)]) * (c-k)
    d1 = key(N[int(c)]) * (k-f)
    return d0+d1

# median is 50th percentile.
median = functools.partial(percentile, percent=0.5)
## end of http://code.activestate.com/recipes/511478/ }}}

By the way, there is a pure-Python implementation of percentile function, in case one doesn’t want to depend on scipy. The function is copied below:

## {{{ http://code.activestate.com/recipes/511478/ (r1)
import math
import functools

def percentile(N, percent, key=lambda x:x):
    """
    Find the percentile of a list of values.

    @parameter N - is a list of values. Note N MUST BE already sorted.
    @parameter percent - a float value from 0.0 to 1.0.
    @parameter key - optional key function to compute value from each element of N.

    @return - the percentile of the values
    """
    if not N:
        return None
    k = (len(N)-1) * percent
    f = math.floor(k)
    c = math.ceil(k)
    if f == c:
        return key(N[int(k)])
    d0 = key(N[int(f)]) * (c-k)
    d1 = key(N[int(c)]) * (k-f)
    return d0+d1

# median is 50th percentile.
median = functools.partial(percentile, percent=0.5)
## end of http://code.activestate.com/recipes/511478/ }}}

回答 2

import numpy as np
a = [154, 400, 1124, 82, 94, 108]
print np.percentile(a,95) # gives the 95th percentile
import numpy as np
a = [154, 400, 1124, 82, 94, 108]
print np.percentile(a,95) # gives the 95th percentile

回答 3

这是不使用numpy的方法,仅使用python计算百分位数。

import math

def percentile(data, percentile):
    size = len(data)
    return sorted(data)[int(math.ceil((size * percentile) / 100)) - 1]

p5 = percentile(mylist, 5)
p25 = percentile(mylist, 25)
p50 = percentile(mylist, 50)
p75 = percentile(mylist, 75)
p95 = percentile(mylist, 95)

Here’s how to do it without numpy, using only python to calculate the percentile.

import math

def percentile(data, percentile):
    size = len(data)
    return sorted(data)[int(math.ceil((size * percentile) / 100)) - 1]

p5 = percentile(mylist, 5)
p25 = percentile(mylist, 25)
p50 = percentile(mylist, 50)
p75 = percentile(mylist, 75)
p95 = percentile(mylist, 95)

回答 4

我通常看到的百分位数定义期望结果是所提供的列表中的值,在该列表下找到P值的百分比…这意味着结果必须来自集合,而不是集合元素之间的插值。为此,您可以使用更简单的功能。

def percentile(N, P):
    """
    Find the percentile of a list of values

    @parameter N - A list of values.  N must be sorted.
    @parameter P - A float value from 0.0 to 1.0

    @return - The percentile of the values.
    """
    n = int(round(P * len(N) + 0.5))
    return N[n-1]

# A = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
# B = (15, 20, 35, 40, 50)
#
# print percentile(A, P=0.3)
# 4
# print percentile(A, P=0.8)
# 9
# print percentile(B, P=0.3)
# 20
# print percentile(B, P=0.8)
# 50

如果您希望从提供的列表中获取等于或低于P值百分比的值,请使用以下简单修改:

def percentile(N, P):
    n = int(round(P * len(N) + 0.5))
    if n > 1:
        return N[n-2]
    else:
        return N[0]

或使用@ijustlovemath建议的简化形式:

def percentile(N, P):
    n = max(int(round(P * len(N) + 0.5)), 2)
    return N[n-2]

The definition of percentile I usually see expects as a result the value from the supplied list below which P percent of values are found… which means the result must be from the set, not an interpolation between set elements. To get that, you can use a simpler function.

def percentile(N, P):
    """
    Find the percentile of a list of values

    @parameter N - A list of values.  N must be sorted.
    @parameter P - A float value from 0.0 to 1.0

    @return - The percentile of the values.
    """
    n = int(round(P * len(N) + 0.5))
    return N[n-1]

# A = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
# B = (15, 20, 35, 40, 50)
#
# print percentile(A, P=0.3)
# 4
# print percentile(A, P=0.8)
# 9
# print percentile(B, P=0.3)
# 20
# print percentile(B, P=0.8)
# 50

If you would rather get the value from the supplied list at or below which P percent of values are found, then use this simple modification:

def percentile(N, P):
    n = int(round(P * len(N) + 0.5))
    if n > 1:
        return N[n-2]
    else:
        return N[0]

Or with the simplification suggested by @ijustlovemath:

def percentile(N, P):
    n = max(int(round(P * len(N) + 0.5)), 2)
    return N[n-2]

回答 5

从开始Python 3.8,标准库附带的quantiles功能作为statistics模块的一部分:

from statistics import quantiles

quantiles([1, 2, 3, 4, 5], n=100)
# [0.06, 0.12, 0.18, 0.24, 0.3, 0.36, 0.42, 0.48, 0.54, 0.6, 0.66, 0.72, 0.78, 0.84, 0.9, 0.96, 1.02, 1.08, 1.14, 1.2, 1.26, 1.32, 1.38, 1.44, 1.5, 1.56, 1.62, 1.68, 1.74, 1.8, 1.86, 1.92, 1.98, 2.04, 2.1, 2.16, 2.22, 2.28, 2.34, 2.4, 2.46, 2.52, 2.58, 2.64, 2.7, 2.76, 2.82, 2.88, 2.94, 3.0, 3.06, 3.12, 3.18, 3.24, 3.3, 3.36, 3.42, 3.48, 3.54, 3.6, 3.66, 3.72, 3.78, 3.84, 3.9, 3.96, 4.02, 4.08, 4.14, 4.2, 4.26, 4.32, 4.38, 4.44, 4.5, 4.56, 4.62, 4.68, 4.74, 4.8, 4.86, 4.92, 4.98, 5.04, 5.1, 5.16, 5.22, 5.28, 5.34, 5.4, 5.46, 5.52, 5.58, 5.64, 5.7, 5.76, 5.82, 5.88, 5.94]
quantiles([1, 2, 3, 4, 5], n=100)[49] # 50th percentile (e.g median)
# 3.0

对于给定的分布,返回切分点dist列表,这些n - 1切点将分n位数间隔(以等概率dist分为n连续间隔)划分为:

statistics.quantiles(dist,*,n = 4,method =’exclusive’)

在那里n,在我们的案例(percentiles)是100

Starting Python 3.8, the standard library comes with the quantiles function as part of the statistics module:

from statistics import quantiles

quantiles([1, 2, 3, 4, 5], n=100)
# [0.06, 0.12, 0.18, 0.24, 0.3, 0.36, 0.42, 0.48, 0.54, 0.6, 0.66, 0.72, 0.78, 0.84, 0.9, 0.96, 1.02, 1.08, 1.14, 1.2, 1.26, 1.32, 1.38, 1.44, 1.5, 1.56, 1.62, 1.68, 1.74, 1.8, 1.86, 1.92, 1.98, 2.04, 2.1, 2.16, 2.22, 2.28, 2.34, 2.4, 2.46, 2.52, 2.58, 2.64, 2.7, 2.76, 2.82, 2.88, 2.94, 3.0, 3.06, 3.12, 3.18, 3.24, 3.3, 3.36, 3.42, 3.48, 3.54, 3.6, 3.66, 3.72, 3.78, 3.84, 3.9, 3.96, 4.02, 4.08, 4.14, 4.2, 4.26, 4.32, 4.38, 4.44, 4.5, 4.56, 4.62, 4.68, 4.74, 4.8, 4.86, 4.92, 4.98, 5.04, 5.1, 5.16, 5.22, 5.28, 5.34, 5.4, 5.46, 5.52, 5.58, 5.64, 5.7, 5.76, 5.82, 5.88, 5.94]
quantiles([1, 2, 3, 4, 5], n=100)[49] # 50th percentile (e.g median)
# 3.0

returns for a given distribution dist a list of n - 1 cut points separating the n quantile intervals (division of dist into n continuous intervals with equal probability):

statistics.quantiles(dist, *, n=4, method=’exclusive’)

where n, in our case (percentiles) is 100.


回答 6

检查scipy.stats模块:

 scipy.stats.scoreatpercentile

check for scipy.stats module:

 scipy.stats.scoreatpercentile

回答 7

要计算系列的百分位数,请运行:

from scipy.stats import rankdata
import numpy as np

def calc_percentile(a, method='min'):
    if isinstance(a, list):
        a = np.asarray(a)
    return rankdata(a, method=method) / float(len(a))

例如:

a = range(20)
print {val: round(percentile, 3) for val, percentile in zip(a, calc_percentile(a))}
>>> {0: 0.05, 1: 0.1, 2: 0.15, 3: 0.2, 4: 0.25, 5: 0.3, 6: 0.35, 7: 0.4, 8: 0.45, 9: 0.5, 10: 0.55, 11: 0.6, 12: 0.65, 13: 0.7, 14: 0.75, 15: 0.8, 16: 0.85, 17: 0.9, 18: 0.95, 19: 1.0}

To calculate the percentile of a series, run:

from scipy.stats import rankdata
import numpy as np

def calc_percentile(a, method='min'):
    if isinstance(a, list):
        a = np.asarray(a)
    return rankdata(a, method=method) / float(len(a))

For example:

a = range(20)
print {val: round(percentile, 3) for val, percentile in zip(a, calc_percentile(a))}
>>> {0: 0.05, 1: 0.1, 2: 0.15, 3: 0.2, 4: 0.25, 5: 0.3, 6: 0.35, 7: 0.4, 8: 0.45, 9: 0.5, 10: 0.55, 11: 0.6, 12: 0.65, 13: 0.7, 14: 0.75, 15: 0.8, 16: 0.85, 17: 0.9, 18: 0.95, 19: 1.0}

回答 8

如果您需要答案成为输入numpy数组的成员,请执行以下操作:

只是要补充一点,默认情况下numpy中的percentile函数将输出计算为输入向量中两个相邻条目的线性加权平均值。在某些情况下,人们可能希望返回的百分位数是向量的实际元素,在这种情况下,从v1.9.0开始,您可以使用“插值”选项,并使用“较低”,“较高”或“最近”。

import numpy as np
x=np.random.uniform(10,size=(1000))-5.0

np.percentile(x,70) # 70th percentile

2.075966046220879

np.percentile(x,70,interpolation="nearest")

2.0729677997904314

后者是向量中的实际项,而前者是两个向量项的线性插值,它们与百分位数接壤

In case you need the answer to be a member of the input numpy array:

Just to add that the percentile function in numpy by default calculates the output as a linear weighted average of the two neighboring entries in the input vector. In some cases people may want the returned percentile to be an actual element of the vector, in this case, from v1.9.0 onwards you can use the “interpolation” option, with either “lower”, “higher” or “nearest”.

import numpy as np
x=np.random.uniform(10,size=(1000))-5.0

np.percentile(x,70) # 70th percentile

2.075966046220879

np.percentile(x,70,interpolation="nearest")

2.0729677997904314

The latter is an actual entry in the vector, while the former is a linear interpolation of two vector entries that border the percentile


回答 9

适用于一系列:用于描述功能

假设您的df包含以下列sales和id。您想要计算销售百分比,则它的工作原理如下:

df['sales'].describe(percentiles = [0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1])

0.0: .0: minimum
1: maximum 
0.1 : 10th percentile and so on

for a series: used describe functions

suppose you have df with following columns sales and id. you want to calculate percentiles for sales then it works like this,

df['sales'].describe(percentiles = [0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1])

0.0: .0: minimum
1: maximum 
0.1 : 10th percentile and so on

回答 10

计算一维numpy序列或矩阵的百分位数的便捷方法是使用numpy.percentile < https://docs.scipy.org/doc/numpy/reference/generated/numpy.percentile.html >。例:

import numpy as np

a = np.array([0,1,2,3,4,5,6,7,8,9,10])
p50 = np.percentile(a, 50) # return 50th percentile, e.g median.
p90 = np.percentile(a, 90) # return 90th percentile.
print('median = ',p50,' and p90 = ',p90) # median =  5.0  and p90 =  9.0

但是,如果您的数据中有任何NaN值,则上述功能将无用。在这种情况下,建议使用的函数是numpy.nanpercentile < https://docs.scipy.org/doc/numpy/reference/generation/numpy.nanpercentile.html >函数:

import numpy as np

a_NaN = np.array([0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10.])
a_NaN[0] = np.nan
print('a_NaN',a_NaN)
p50 = np.nanpercentile(a_NaN, 50) # return 50th percentile, e.g median.
p90 = np.nanpercentile(a_NaN, 90) # return 90th percentile.
print('median = ',p50,' and p90 = ',p90) # median =  5.5  and p90 =  9.1

在上面显示的两个选项中,您仍然可以选择插值模式。请按照以下示例进行操作,以便于理解。

import numpy as np

b = np.array([1,2,3,4,5,6,7,8,9,10])
print('percentiles using default interpolation')
p10 = np.percentile(b, 10) # return 10th percentile.
p50 = np.percentile(b, 50) # return 50th percentile, e.g median.
p90 = np.percentile(b, 90) # return 90th percentile.
print('p10 = ',p10,', median = ',p50,' and p90 = ',p90)
#p10 =  1.9 , median =  5.5  and p90 =  9.1

print('percentiles using interpolation = ', "linear")
p10 = np.percentile(b, 10,interpolation='linear') # return 10th percentile.
p50 = np.percentile(b, 50,interpolation='linear') # return 50th percentile, e.g median.
p90 = np.percentile(b, 90,interpolation='linear') # return 90th percentile.
print('p10 = ',p10,', median = ',p50,' and p90 = ',p90)
#p10 =  1.9 , median =  5.5  and p90 =  9.1

print('percentiles using interpolation = ', "lower")
p10 = np.percentile(b, 10,interpolation='lower') # return 10th percentile.
p50 = np.percentile(b, 50,interpolation='lower') # return 50th percentile, e.g median.
p90 = np.percentile(b, 90,interpolation='lower') # return 90th percentile.
print('p10 = ',p10,', median = ',p50,' and p90 = ',p90)
#p10 =  1 , median =  5  and p90 =  9

print('percentiles using interpolation = ', "higher")
p10 = np.percentile(b, 10,interpolation='higher') # return 10th percentile.
p50 = np.percentile(b, 50,interpolation='higher') # return 50th percentile, e.g median.
p90 = np.percentile(b, 90,interpolation='higher') # return 90th percentile.
print('p10 = ',p10,', median = ',p50,' and p90 = ',p90)
#p10 =  2 , median =  6  and p90 =  10

print('percentiles using interpolation = ', "midpoint")
p10 = np.percentile(b, 10,interpolation='midpoint') # return 10th percentile.
p50 = np.percentile(b, 50,interpolation='midpoint') # return 50th percentile, e.g median.
p90 = np.percentile(b, 90,interpolation='midpoint') # return 90th percentile.
print('p10 = ',p10,', median = ',p50,' and p90 = ',p90)
#p10 =  1.5 , median =  5.5  and p90 =  9.5

print('percentiles using interpolation = ', "nearest")
p10 = np.percentile(b, 10,interpolation='nearest') # return 10th percentile.
p50 = np.percentile(b, 50,interpolation='nearest') # return 50th percentile, e.g median.
p90 = np.percentile(b, 90,interpolation='nearest') # return 90th percentile.
print('p10 = ',p10,', median = ',p50,' and p90 = ',p90)
#p10 =  2 , median =  5  and p90 =  9

如果您的输入数组仅包含整数值,那么您可能会对百分位数答案作为整数感兴趣。如果是这样,请选择插值模式,例如“较低”,“较高”或“最近”。

A convenient way to calculate percentiles for a one-dimensional numpy sequence or matrix is by using numpy.percentile <https://docs.scipy.org/doc/numpy/reference/generated/numpy.percentile.html>. Example:

import numpy as np

a = np.array([0,1,2,3,4,5,6,7,8,9,10])
p50 = np.percentile(a, 50) # return 50th percentile, e.g median.
p90 = np.percentile(a, 90) # return 90th percentile.
print('median = ',p50,' and p90 = ',p90) # median =  5.0  and p90 =  9.0

However, if there is any NaN value in your data, the above function will not be useful. The recommended function to use in that case is the numpy.nanpercentile <https://docs.scipy.org/doc/numpy/reference/generated/numpy.nanpercentile.html> function:

import numpy as np

a_NaN = np.array([0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10.])
a_NaN[0] = np.nan
print('a_NaN',a_NaN)
p50 = np.nanpercentile(a_NaN, 50) # return 50th percentile, e.g median.
p90 = np.nanpercentile(a_NaN, 90) # return 90th percentile.
print('median = ',p50,' and p90 = ',p90) # median =  5.5  and p90 =  9.1

In the two options presented above, you can still choose the interpolation mode. Follow the examples below for easier understanding.

import numpy as np

b = np.array([1,2,3,4,5,6,7,8,9,10])
print('percentiles using default interpolation')
p10 = np.percentile(b, 10) # return 10th percentile.
p50 = np.percentile(b, 50) # return 50th percentile, e.g median.
p90 = np.percentile(b, 90) # return 90th percentile.
print('p10 = ',p10,', median = ',p50,' and p90 = ',p90)
#p10 =  1.9 , median =  5.5  and p90 =  9.1

print('percentiles using interpolation = ', "linear")
p10 = np.percentile(b, 10,interpolation='linear') # return 10th percentile.
p50 = np.percentile(b, 50,interpolation='linear') # return 50th percentile, e.g median.
p90 = np.percentile(b, 90,interpolation='linear') # return 90th percentile.
print('p10 = ',p10,', median = ',p50,' and p90 = ',p90)
#p10 =  1.9 , median =  5.5  and p90 =  9.1

print('percentiles using interpolation = ', "lower")
p10 = np.percentile(b, 10,interpolation='lower') # return 10th percentile.
p50 = np.percentile(b, 50,interpolation='lower') # return 50th percentile, e.g median.
p90 = np.percentile(b, 90,interpolation='lower') # return 90th percentile.
print('p10 = ',p10,', median = ',p50,' and p90 = ',p90)
#p10 =  1 , median =  5  and p90 =  9

print('percentiles using interpolation = ', "higher")
p10 = np.percentile(b, 10,interpolation='higher') # return 10th percentile.
p50 = np.percentile(b, 50,interpolation='higher') # return 50th percentile, e.g median.
p90 = np.percentile(b, 90,interpolation='higher') # return 90th percentile.
print('p10 = ',p10,', median = ',p50,' and p90 = ',p90)
#p10 =  2 , median =  6  and p90 =  10

print('percentiles using interpolation = ', "midpoint")
p10 = np.percentile(b, 10,interpolation='midpoint') # return 10th percentile.
p50 = np.percentile(b, 50,interpolation='midpoint') # return 50th percentile, e.g median.
p90 = np.percentile(b, 90,interpolation='midpoint') # return 90th percentile.
print('p10 = ',p10,', median = ',p50,' and p90 = ',p90)
#p10 =  1.5 , median =  5.5  and p90 =  9.5

print('percentiles using interpolation = ', "nearest")
p10 = np.percentile(b, 10,interpolation='nearest') # return 10th percentile.
p50 = np.percentile(b, 50,interpolation='nearest') # return 50th percentile, e.g median.
p90 = np.percentile(b, 90,interpolation='nearest') # return 90th percentile.
print('p10 = ',p10,', median = ',p50,' and p90 = ',p90)
#p10 =  2 , median =  5  and p90 =  9

If your input array only consists of integer values, you might be interested in the percentil answer as an integer. If so, choose interpolation mode such as ‘lower’, ‘higher’, or ‘nearest’.


声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。