问题:如何使IPython Notebook Matplotlib内联绘图

我正在MacOS X上使用Python 2.7.2和IPython 1.1.0的情况下使用IPython Notebook。

我无法获得matplotlib图形来内联显示。

import matplotlib
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline  

我也试过了%pylab inline和ipython命令行参数,--pylab=inline但这没什么区别。

x = np.linspace(0, 3*np.pi, 500)
plt.plot(x, np.sin(x**2))
plt.title('A simple chirp')
plt.show()

我得到的不是内联图形,而是:

<matplotlib.figure.Figure at 0x110b9c450>

matplotlib.get_backend()表明我有'module://IPython.kernel.zmq.pylab.backend_inline'后端。

I am trying to use IPython notebook on MacOS X with Python 2.7.2 and IPython 1.1.0.

I cannot get matplotlib graphics to show up inline.

import matplotlib
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline  

I have also tried %pylab inline and the ipython command line arguments --pylab=inline but this makes no difference.

x = np.linspace(0, 3*np.pi, 500)
plt.plot(x, np.sin(x**2))
plt.title('A simple chirp')
plt.show()

Instead of inline graphics, I get this:

<matplotlib.figure.Figure at 0x110b9c450>

And matplotlib.get_backend() shows that I have the 'module://IPython.kernel.zmq.pylab.backend_inline' backend.


回答 0

%matplotlib inline在笔记本的第一个单元中使用了它,并且可以正常工作。我认为您应该尝试:

%matplotlib inline

import matplotlib
import numpy as np
import matplotlib.pyplot as plt

通过在配置文件中设置以下配置选项,默认情况下,您也始终可以始终默认以内联模式启动所有IPython内核:

c.IPKernelApp.matplotlib=<CaselessStrEnum>
  Default: None
  Choices: ['auto', 'gtk', 'gtk3', 'inline', 'nbagg', 'notebook', 'osx', 'qt', 'qt4', 'qt5', 'tk', 'wx']
  Configure matplotlib for interactive use with the default matplotlib backend.

I used %matplotlib inline in the first cell of the notebook and it works. I think you should try:

%matplotlib inline

import matplotlib
import numpy as np
import matplotlib.pyplot as plt

You can also always start all your IPython kernels in inline mode by default by setting the following config options in your config files:

c.IPKernelApp.matplotlib=<CaselessStrEnum>
  Default: None
  Choices: ['auto', 'gtk', 'gtk3', 'inline', 'nbagg', 'notebook', 'osx', 'qt', 'qt4', 'qt5', 'tk', 'wx']
  Configure matplotlib for interactive use with the default matplotlib backend.

回答 1

如果您的matplotlib版本高于1.4,则也可以使用

IPython 3.x及更高版本

%matplotlib notebook

import matplotlib.pyplot as plt

旧版本

%matplotlib nbagg

import matplotlib.pyplot as plt

两者都将激活nbagg后端,从而启用交互性。

使用nbagg后端的示例图

If your matplotlib version is above 1.4, it is also possible to use

IPython 3.x and above

%matplotlib notebook

import matplotlib.pyplot as plt

older versions

%matplotlib nbagg

import matplotlib.pyplot as plt

Both will activate the nbagg backend, which enables interactivity.

Example plot with the nbagg backend


回答 2

Ctrl + Enter

%matplotlib inline

魔线:D

请参阅:使用Matplotlib进行绘图

Ctrl + Enter

%matplotlib inline

Magic Line :D

See: Plotting with Matplotlib.


回答 3

使用%pylab inline魔术命令。

Use the %pylab inline magic command.


回答 4

要在Jupyter(IPython 3)中默认使matplotlib内联:

  1. 编辑档案 ~/.ipython/profile_default/ipython_config.py

  2. 加线 c.InteractiveShellApp.matplotlib = 'inline'

请注意,添加该行将ipython_notebook_config.py不起作用。否则,它可以与Jupyter和IPython 3.1.0一起使用

To make matplotlib inline by default in Jupyter (IPython 3):

  1. Edit file ~/.ipython/profile_default/ipython_config.py

  2. Add line c.InteractiveShellApp.matplotlib = 'inline'

Please note that adding this line to ipython_notebook_config.py would not work. Otherwise it works well with Jupyter and IPython 3.1.0


回答 5

我必须同意foobarbecue(我的建议不足,无法简单地在他的帖子下插入评论):

--pylab根据Fernando Perez(ipythonnb的创建者)的说法,现在建议不要使用该参数启动python笔记本。%matplotlib inline应该是笔记本的初始命令。

看到这里:http : //nbviewer.ipython.org/github/ipython/ipython/blob/1.x/examples/notebooks/Part%203%20-%20Plotting%20with%20Matplotlib.ipynb

I have to agree with foobarbecue (I don’t have enough recs to be able to simply insert a comment under his post):

It’s now recommended that python notebook isn’t started wit the argument --pylab, and according to Fernando Perez (creator of ipythonnb) %matplotlib inline should be the initial notebook command.

See here: http://nbviewer.ipython.org/github/ipython/ipython/blob/1.x/examples/notebooks/Part%203%20-%20Plotting%20with%20Matplotlib.ipynb


回答 6

我找到了一种非常令人满意的解决方法。我安装了Anaconda Python,现在对我来说开箱即用。

I found a workaround that is quite satisfactory. I installed Anaconda Python and this now works out of the box for me.


回答 7

我做了anaconda安装,但是matplotlib没有绘制

当我这样做时它开始绘图

import matplotlib
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline  

I did the anaconda install but matplotlib is not plotting

It starts plotting when i did this

import matplotlib
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline  

回答 8

您可以使用语法错误来模拟此问题,但是%matplotlib inline无法解决该问题。

首先是创建绘图的正确方法的示例。eNord9提供的导入内容和魔术可以使一切正常工作。

df_randNumbers1 = pd.DataFrame(np.random.randint(0,100,size=(100, 6)), columns=list('ABCDEF'))

df_randNumbers1.ix[:,["A","B"]].plot.kde()

但是,通过将()绘图类型的末尾保留为空白,您会收到含糊不清的非错误。

错误代码:

df_randNumbers1.ix[:,["A","B"]].plot.kde

错误示例:

<bound method FramePlotMethods.kde of <pandas.tools.plotting.FramePlotMethods object at 0x000001DDAF029588>>

除了这一行消息外,没有堆栈跟踪或其他明显的理由认为您犯了语法错误。该图不打印。

You can simulate this problem with a syntax mistake, however, %matplotlib inline won’t resolve the issue.

First an example of the right way to create a plot. Everything works as expected with the imports and magic that eNord9 supplied.

df_randNumbers1 = pd.DataFrame(np.random.randint(0,100,size=(100, 6)), columns=list('ABCDEF'))

df_randNumbers1.ix[:,["A","B"]].plot.kde()

However, by leaving the () off the end of the plot type you receive a somewhat ambiguous non-error.

Erronious code:

df_randNumbers1.ix[:,["A","B"]].plot.kde

Example error:

<bound method FramePlotMethods.kde of <pandas.tools.plotting.FramePlotMethods object at 0x000001DDAF029588>>

Other than this one line message, there is no stack trace or other obvious reason to think you made a syntax error. The plot doesn’t print.


回答 9

在Jupyter的单独单元中运行绘图命令时,我遇到了同样的问题:

In [1]:  %matplotlib inline
         import matplotlib
         import matplotlib.pyplot as plt
         import numpy as np
In [2]:  x = np.array([1, 3, 4])
         y = np.array([1, 5, 3])
In [3]:  fig = plt.figure()
         <Figure size 432x288 with 0 Axes>                      #this might be the problem
In [4]:  ax = fig.add_subplot(1, 1, 1)
In [5]:  ax.scatter(x, y)
Out[5]:  <matplotlib.collections.PathCollection at 0x12341234>  # CAN'T SEE ANY PLOT :(
In [6]:  plt.show()                                             # STILL CAN'T SEE IT :(

通过将绘图命令合并到单个单元格中解决了该问题:

In [1]:  %matplotlib inline
         import matplotlib
         import matplotlib.pyplot as plt
         import numpy as np
In [2]:  x = np.array([1, 3, 4])
         y = np.array([1, 5, 3])
In [3]:  fig = plt.figure()
         ax = fig.add_subplot(1, 1, 1)
         ax.scatter(x, y)
Out[3]:  <matplotlib.collections.PathCollection at 0x12341234>
         # AND HERE APPEARS THE PLOT AS DESIRED :)

I had the same problem when I was running the plotting commands in separate cells in Jupyter:

In [1]:  %matplotlib inline
         import matplotlib
         import matplotlib.pyplot as plt
         import numpy as np
In [2]:  x = np.array([1, 3, 4])
         y = np.array([1, 5, 3])
In [3]:  fig = plt.figure()
         <Figure size 432x288 with 0 Axes>                      #this might be the problem
In [4]:  ax = fig.add_subplot(1, 1, 1)
In [5]:  ax.scatter(x, y)
Out[5]:  <matplotlib.collections.PathCollection at 0x12341234>  # CAN'T SEE ANY PLOT :(
In [6]:  plt.show()                                             # STILL CAN'T SEE IT :(

The problem was solved by merging the plotting commands into a single cell:

In [1]:  %matplotlib inline
         import matplotlib
         import matplotlib.pyplot as plt
         import numpy as np
In [2]:  x = np.array([1, 3, 4])
         y = np.array([1, 5, 3])
In [3]:  fig = plt.figure()
         ax = fig.add_subplot(1, 1, 1)
         ax.scatter(x, y)
Out[3]:  <matplotlib.collections.PathCollection at 0x12341234>
         # AND HERE APPEARS THE PLOT AS DESIRED :)

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。