问题:如何在广度优先搜索中跟踪路径?

如何跟踪广度优先搜索的路径,如以下示例所示:

如果搜索key 11,则返回连接1到11 的最短列表。

[1, 4, 7, 11]

How do you trace the path of a Breadth-First Search, such that in the following example:

If searching for key 11, return the shortest list connecting 1 to 11.

[1, 4, 7, 11]

回答 0

您应该先查看http://en.wikipedia.org/wiki/Breadth-first_search


下面是一个快速实现,其中我使用列表列表表示路径队列。

# graph is in adjacent list representation
graph = {
        '1': ['2', '3', '4'],
        '2': ['5', '6'],
        '5': ['9', '10'],
        '4': ['7', '8'],
        '7': ['11', '12']
        }

def bfs(graph, start, end):
    # maintain a queue of paths
    queue = []
    # push the first path into the queue
    queue.append([start])
    while queue:
        # get the first path from the queue
        path = queue.pop(0)
        # get the last node from the path
        node = path[-1]
        # path found
        if node == end:
            return path
        # enumerate all adjacent nodes, construct a new path and push it into the queue
        for adjacent in graph.get(node, []):
            new_path = list(path)
            new_path.append(adjacent)
            queue.append(new_path)

print bfs(graph, '1', '11')

另一种方法是维护从每个节点到其父节点的映射,并在检查相邻节点时记录其父节点。搜索完成后,只需根据父映射进行回溯即可。

graph = {
        '1': ['2', '3', '4'],
        '2': ['5', '6'],
        '5': ['9', '10'],
        '4': ['7', '8'],
        '7': ['11', '12']
        }

def backtrace(parent, start, end):
    path = [end]
    while path[-1] != start:
        path.append(parent[path[-1]])
    path.reverse()
    return path


def bfs(graph, start, end):
    parent = {}
    queue = []
    queue.append(start)
    while queue:
        node = queue.pop(0)
        if node == end:
            return backtrace(parent, start, end)
        for adjacent in graph.get(node, []):
            if node not in queue :
                parent[adjacent] = node # <<<<< record its parent 
                queue.append(adjacent)

print bfs(graph, '1', '11')

上面的代码基于没有循环的假设。

You should have look at http://en.wikipedia.org/wiki/Breadth-first_search first.


Below is a quick implementation, in which I used a list of list to represent the queue of paths.

# graph is in adjacent list representation
graph = {
        '1': ['2', '3', '4'],
        '2': ['5', '6'],
        '5': ['9', '10'],
        '4': ['7', '8'],
        '7': ['11', '12']
        }

def bfs(graph, start, end):
    # maintain a queue of paths
    queue = []
    # push the first path into the queue
    queue.append([start])
    while queue:
        # get the first path from the queue
        path = queue.pop(0)
        # get the last node from the path
        node = path[-1]
        # path found
        if node == end:
            return path
        # enumerate all adjacent nodes, construct a new path and push it into the queue
        for adjacent in graph.get(node, []):
            new_path = list(path)
            new_path.append(adjacent)
            queue.append(new_path)

print bfs(graph, '1', '11')

Another approach would be maintaining a mapping from each node to its parent, and when inspecting the adjacent node, record its parent. When the search is done, simply backtrace according the parent mapping.

graph = {
        '1': ['2', '3', '4'],
        '2': ['5', '6'],
        '5': ['9', '10'],
        '4': ['7', '8'],
        '7': ['11', '12']
        }

def backtrace(parent, start, end):
    path = [end]
    while path[-1] != start:
        path.append(parent[path[-1]])
    path.reverse()
    return path


def bfs(graph, start, end):
    parent = {}
    queue = []
    queue.append(start)
    while queue:
        node = queue.pop(0)
        if node == end:
            return backtrace(parent, start, end)
        for adjacent in graph.get(node, []):
            if node not in queue :
                parent[adjacent] = node # <<<<< record its parent 
                queue.append(adjacent)

print bfs(graph, '1', '11')

The above codes are based on the assumption that there’s no cycles.


回答 1

我非常喜欢qiao的第一个答案!这里唯一缺少的是将顶点标记为已访问。

为什么我们需要这样做?
让我们想象一下,从节点11连接了另一个节点号13。现在我们的目标是找到节点13。
经过一点点运行,队列将如下所示:

[[1, 2, 6], [1, 3, 10], [1, 4, 7], [1, 4, 8], [1, 2, 5, 9], [1, 2, 5, 10]]

请注意,最后有两个路径的节点编号为10。
这意味着从节点号10开始的路径将被检查两次。在这种情况下,它看起来并不那么糟糕,因为10号节点没有任何子节点。但是,这可能真的很糟糕(即使在这里我们也会无故检查两次该节点。)
13号节点不在其中这些路径,因此程序在到达最后一个节点号为10的第二条路径之前不会返回。我们将对其进行重新检查。

我们所缺少的只是一个标记访问的节点而不要再次检查它们的集合。
这是修改后的qiao的代码:

graph = {
    1: [2, 3, 4],
    2: [5, 6],
    3: [10],
    4: [7, 8],
    5: [9, 10],
    7: [11, 12],
    11: [13]
}


def bfs(graph_to_search, start, end):
    queue = [[start]]
    visited = set()

    while queue:
        # Gets the first path in the queue
        path = queue.pop(0)

        # Gets the last node in the path
        vertex = path[-1]

        # Checks if we got to the end
        if vertex == end:
            return path
        # We check if the current node is already in the visited nodes set in order not to recheck it
        elif vertex not in visited:
            # enumerate all adjacent nodes, construct a new path and push it into the queue
            for current_neighbour in graph_to_search.get(vertex, []):
                new_path = list(path)
                new_path.append(current_neighbour)
                queue.append(new_path)

            # Mark the vertex as visited
            visited.add(vertex)


print bfs(graph, 1, 13)

该程序的输出将是:

[1, 4, 7, 11, 13]

没有轻松的检查。

I liked qiao’s first answer very much! The only thing missing here is to mark the vertexes as visited.

Why we need to do it?
Lets imagine that there is another node number 13 connected from node 11. Now our goal is to find node 13.
After a little bit of a run the queue will look like this:

[[1, 2, 6], [1, 3, 10], [1, 4, 7], [1, 4, 8], [1, 2, 5, 9], [1, 2, 5, 10]]

Note that there are TWO paths with node number 10 at the end.
Which means that the paths from node number 10 will be checked twice. In this case it doesn’t look so bad because node number 10 doesn’t have any children.. But it could be really bad (even here we will check that node twice for no reason..)
Node number 13 isn’t in those paths so the program won’t return before reaching to the second path with node number 10 at the end..And we will recheck it..

All we are missing is a set to mark the visited nodes and not to check them again..
This is qiao’s code after the modification:

graph = {
    1: [2, 3, 4],
    2: [5, 6],
    3: [10],
    4: [7, 8],
    5: [9, 10],
    7: [11, 12],
    11: [13]
}


def bfs(graph_to_search, start, end):
    queue = [[start]]
    visited = set()

    while queue:
        # Gets the first path in the queue
        path = queue.pop(0)

        # Gets the last node in the path
        vertex = path[-1]

        # Checks if we got to the end
        if vertex == end:
            return path
        # We check if the current node is already in the visited nodes set in order not to recheck it
        elif vertex not in visited:
            # enumerate all adjacent nodes, construct a new path and push it into the queue
            for current_neighbour in graph_to_search.get(vertex, []):
                new_path = list(path)
                new_path.append(current_neighbour)
                queue.append(new_path)

            # Mark the vertex as visited
            visited.add(vertex)


print bfs(graph, 1, 13)

The output of the program will be:

[1, 4, 7, 11, 13]

Without the unneccecery rechecks..


回答 2

非常简单的代码。每次发现节点时,您都​​会追加路径。

graph = {
         'A': set(['B', 'C']),
         'B': set(['A', 'D', 'E']),
         'C': set(['A', 'F']),
         'D': set(['B']),
         'E': set(['B', 'F']),
         'F': set(['C', 'E'])
         }
def retunShortestPath(graph, start, end):

    queue = [(start,[start])]
    visited = set()

    while queue:
        vertex, path = queue.pop(0)
        visited.add(vertex)
        for node in graph[vertex]:
            if node == end:
                return path + [end]
            else:
                if node not in visited:
                    visited.add(node)
                    queue.append((node, path + [node]))

Very easy code. You keep appending the path each time you discover a node.

graph = {
         'A': set(['B', 'C']),
         'B': set(['A', 'D', 'E']),
         'C': set(['A', 'F']),
         'D': set(['B']),
         'E': set(['B', 'F']),
         'F': set(['C', 'E'])
         }
def retunShortestPath(graph, start, end):

    queue = [(start,[start])]
    visited = set()

    while queue:
        vertex, path = queue.pop(0)
        visited.add(vertex)
        for node in graph[vertex]:
            if node == end:
                return path + [end]
            else:
                if node not in visited:
                    visited.add(node)
                    queue.append((node, path + [node]))

回答 3

我以为我会尝试将此代码编写起来很有趣:

graph = {
        '1': ['2', '3', '4'],
        '2': ['5', '6'],
        '5': ['9', '10'],
        '4': ['7', '8'],
        '7': ['11', '12']
        }

def bfs(graph, forefront, end):
    # assumes no cycles

    next_forefront = [(node, path + ',' + node) for i, path in forefront if i in graph for node in graph[i]]

    for node,path in next_forefront:
        if node==end:
            return path
    else:
        return bfs(graph,next_forefront,end)

print bfs(graph,[('1','1')],'11')

# >>>
# 1, 4, 7, 11

如果需要循环,可以添加以下内容:

for i, j in for_front: # allow cycles, add this code
    if i in graph:
        del graph[i]

I thought I’d try code this up for fun:

graph = {
        '1': ['2', '3', '4'],
        '2': ['5', '6'],
        '5': ['9', '10'],
        '4': ['7', '8'],
        '7': ['11', '12']
        }

def bfs(graph, forefront, end):
    # assumes no cycles

    next_forefront = [(node, path + ',' + node) for i, path in forefront if i in graph for node in graph[i]]

    for node,path in next_forefront:
        if node==end:
            return path
    else:
        return bfs(graph,next_forefront,end)

print bfs(graph,[('1','1')],'11')

# >>>
# 1, 4, 7, 11

If you want cycles you could add this:

for i, j in for_front: # allow cycles, add this code
    if i in graph:
        del graph[i]

回答 4

我既喜欢@乔的第一个答案,又喜欢@Or的加法。为了减少处理量,我想补充一下Or的答案。

在@Or的答案中,访问节点的跟踪很棒。我们还可以允许程序比当前状态早退出。在for循环的某个点上,current_neighbour必须是end,一旦发生,就会找到最短路径,程序可以返回。

我将修改方法如下,请密切注意for循环

graph = {
1: [2, 3, 4],
2: [5, 6],
3: [10],
4: [7, 8],
5: [9, 10],
7: [11, 12],
11: [13]
}


    def bfs(graph_to_search, start, end):
        queue = [[start]]
        visited = set()

    while queue:
        # Gets the first path in the queue
        path = queue.pop(0)

        # Gets the last node in the path
        vertex = path[-1]

        # Checks if we got to the end
        if vertex == end:
            return path
        # We check if the current node is already in the visited nodes set in order not to recheck it
        elif vertex not in visited:
            # enumerate all adjacent nodes, construct a new path and push it into the queue
            for current_neighbour in graph_to_search.get(vertex, []):
                new_path = list(path)
                new_path.append(current_neighbour)
                queue.append(new_path)

                #No need to visit other neighbour. Return at once
                if current_neighbour == end
                    return new_path;

            # Mark the vertex as visited
            visited.add(vertex)


print bfs(graph, 1, 13)

输出和其他所有内容都将相同。但是,该代码将花费更少的时间来处理。这在较大的图上特别有用。我希望这对以后的人有所帮助。

I like both @Qiao first answer and @Or’s addition. For a sake of a little less processing I would like to add to Or’s answer.

In @Or’s answer keeping track of visited node is great. We can also allow the program to exit sooner that it currently is. At some point in the for loop the current_neighbour will have to be the end, and once that happens the shortest path is found and program can return.

I would modify the the method as follow, pay close attention to the for loop

graph = {
1: [2, 3, 4],
2: [5, 6],
3: [10],
4: [7, 8],
5: [9, 10],
7: [11, 12],
11: [13]
}


    def bfs(graph_to_search, start, end):
        queue = [[start]]
        visited = set()

    while queue:
        # Gets the first path in the queue
        path = queue.pop(0)

        # Gets the last node in the path
        vertex = path[-1]

        # Checks if we got to the end
        if vertex == end:
            return path
        # We check if the current node is already in the visited nodes set in order not to recheck it
        elif vertex not in visited:
            # enumerate all adjacent nodes, construct a new path and push it into the queue
            for current_neighbour in graph_to_search.get(vertex, []):
                new_path = list(path)
                new_path.append(current_neighbour)
                queue.append(new_path)

                #No need to visit other neighbour. Return at once
                if current_neighbour == end
                    return new_path;

            # Mark the vertex as visited
            visited.add(vertex)


print bfs(graph, 1, 13)

The output and everything else will be the same. However, the code will take less time to process. This is especially useful on larger graphs. I hope this helps someone in the future.


声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。