问题:如何在CPU上运行Tensorflow

我已经在Ubuntu 14.04上安装了GPU版本的tensorflow。

我在GPU服务器上,张量流可以访问可用的GPU。

我想在CPU上运行tensorflow。

通常我可以env CUDA_VISIBLE_DEVICES=0在GPU号上运行。0。

我该如何在CPU之间进行选择?

我不喜欢重新编写我的代码 with tf.device("/cpu:0"):

I have installed the GPU version of tensorflow on an Ubuntu 14.04.

I am on a GPU server where tensorflow can access the available GPUs.

I want to run tensorflow on the CPUs.

Normally I can use env CUDA_VISIBLE_DEVICES=0 to run on GPU no. 0.

How can I pick between the CPUs instead?

I am not intersted in rewritting my code with with tf.device("/cpu:0"):


回答 0

您可以device_counttf.Session以下方式应用参数:

config = tf.ConfigProto(
        device_count = {'GPU': 0}
    )
sess = tf.Session(config=config)

另请参阅protobuf配置文件:

tensorflow/core/framework/config.proto

You can apply device_count parameter per tf.Session:

config = tf.ConfigProto(
        device_count = {'GPU': 0}
    )
sess = tf.Session(config=config)

See also protobuf config file:

tensorflow/core/framework/config.proto


回答 1

您还可以将环境变量设置为

CUDA_VISIBLE_DEVICES=""

无需修改源代码。

You can also set the environment variable to

CUDA_VISIBLE_DEVICES=""

without having to modify the source code.


回答 2

如果以上答案不起作用,请尝试:

os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

If the above answers don’t work, try:

os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

回答 3

对我来说,只有CUDA_VISIBLE_DEVICES精确设置才行-1

作品:

import os
import tensorflow as tf

os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

if tf.test.gpu_device_name():
    print('GPU found')
else:
    print("No GPU found")

# No GPU found

难道工作:

import os
import tensorflow as tf

os.environ['CUDA_VISIBLE_DEVICES'] = ''    

if tf.test.gpu_device_name():
    print('GPU found')
else:
    print("No GPU found")

# GPU found

For me, only setting CUDA_VISIBLE_DEVICES to precisely -1 works:

Works:

import os
import tensorflow as tf

os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

if tf.test.gpu_device_name():
    print('GPU found')
else:
    print("No GPU found")

# No GPU found

Does not work:

import os
import tensorflow as tf

os.environ['CUDA_VISIBLE_DEVICES'] = ''    

if tf.test.gpu_device_name():
    print('GPU found')
else:
    print("No GPU found")

# GPU found

回答 4

只需使用下面的代码。

import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

Just using the code below.

import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

回答 5

在某些系统中,必须指定:

import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]=""  # or even "-1"

在导入张量流之前。

In some systems one have to specify:

import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]=""  # or even "-1"

BEFORE importing tensorflow.


回答 6

您可以使用tf.config.set_visible_devices。一种可能的功能,它允许您设置是否使用以及使用哪些GPU:

import tensorflow as tf

def set_gpu(gpu_ids_list):
    gpus = tf.config.list_physical_devices('GPU')
    if gpus:
        try:
            gpus_used = [gpus[i] for i in gpu_ids_list]
            tf.config.set_visible_devices(gpus_used, 'GPU')
            logical_gpus = tf.config.experimental.list_logical_devices('GPU')
            print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPU")
        except RuntimeError as e:
            # Visible devices must be set before GPUs have been initialized
            print(e)

假设你是用4个GPU的系统上,你希望只使用两个GPU,在一个具有id = 0和一个有id = 2,那么你的代码的第一个命令,导入库后,将是:

set_gpu([0, 2])

对于您的情况,仅使用CPU,可以使用一个空列表调用该函数

set_gpu([])

为了完整起见,如果要避免运行时初始化将分配设备上的所有内存,可以使用tf.config.experimental.set_memory_growth。最后,用于管理要使用的设备的功能(动态占用GPU的内存)变为:

import tensorflow as tf

def set_gpu(gpu_ids_list):
    gpus = tf.config.list_physical_devices('GPU')
    if gpus:
        try:
            gpus_used = [gpus[i] for i in gpu_ids_list]
            tf.config.set_visible_devices(gpus_used, 'GPU')
            for gpu in gpus_used:
                tf.config.experimental.set_memory_growth(gpu, True)
            logical_gpus = tf.config.experimental.list_logical_devices('GPU')
            print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPU")
        except RuntimeError as e:
            # Visible devices must be set before GPUs have been initialized
            print(e)

You could use tf.config.set_visible_devices. One possible function that allows you to set if and which GPUs to use is:

import tensorflow as tf

def set_gpu(gpu_ids_list):
    gpus = tf.config.list_physical_devices('GPU')
    if gpus:
        try:
            gpus_used = [gpus[i] for i in gpu_ids_list]
            tf.config.set_visible_devices(gpus_used, 'GPU')
            logical_gpus = tf.config.experimental.list_logical_devices('GPU')
            print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPU")
        except RuntimeError as e:
            # Visible devices must be set before GPUs have been initialized
            print(e)

Suppose you are on a system with 4 GPUs and you want to use only two GPUs, the one with id = 0 and the one with id = 2, then the first command of your code, immediately after importing the libraries, would be:

set_gpu([0, 2])

In your case, to use only the CPU, you can invoke the function with an empty list:

set_gpu([])

For completeness, if you want to avoid that the runtime initialization will allocate all memory on the device, you can use tf.config.experimental.set_memory_growth. Finally, the function to manage which devices to use, occupying the GPUs memory dynamically, becomes:

import tensorflow as tf

def set_gpu(gpu_ids_list):
    gpus = tf.config.list_physical_devices('GPU')
    if gpus:
        try:
            gpus_used = [gpus[i] for i in gpu_ids_list]
            tf.config.set_visible_devices(gpus_used, 'GPU')
            for gpu in gpus_used:
                tf.config.experimental.set_memory_growth(gpu, True)
            logical_gpus = tf.config.experimental.list_logical_devices('GPU')
            print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPU")
        except RuntimeError as e:
            # Visible devices must be set before GPUs have been initialized
            print(e)

回答 7

在安装级别上的另一种可能的解决方案是寻找仅CPU的变体:https : //www.tensorflow.org/install/pip#package-location

就我而言,这给出了:

pip3 install https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow_cpu-2.2.0-cp38-cp38-win_amd64.whl

只需选择正确的版本。如在此答案中说明的使用venv的奖励积分。

Another possible solution on installation level would be to look for the CPU only variant: https://www.tensorflow.org/install/pip#package-location

In my case, this gives right now:

pip3 install https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow_cpu-2.2.0-cp38-cp38-win_amd64.whl

Just select the correct version. Bonus points for using a venv like explained eg in this answer.


声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。