问题:如何在Pandas中的特定列索引处插入列?
我可以在熊猫的特定列索引处插入列吗?
import pandas as pd
df = pd.DataFrame({'l':['a','b','c','d'], 'v':[1,2,1,2]})
df['n'] = 0
这会将列n
作为的最后一列df
,但是没有办法告诉df
您将其放在n
开头吗?
回答 0
参见文档:http : //pandas.pydata.org/pandas-docs/stable/genic/pandas.DataFrame.insert.html
使用loc = 0将在开头插入
df.insert(loc, column, value)
df = pd.DataFrame({'B': [1, 2, 3], 'C': [4, 5, 6]})
df
Out:
B C
0 1 4
1 2 5
2 3 6
idx = 0
new_col = [7, 8, 9] # can be a list, a Series, an array or a scalar
df.insert(loc=idx, column='A', value=new_col)
df
Out:
A B C
0 7 1 4
1 8 2 5
2 9 3 6
回答 1
您可以尝试将列提取为列表,根据需要对其进行按摩,然后为数据框重新编制索引:
>>> cols = df.columns.tolist()
>>> cols = [cols[-1]]+cols[:-1] # or whatever change you need
>>> df.reindex(columns=cols)
n l v
0 0 a 1
1 0 b 2
2 0 c 1
3 0 d 2
编辑:这可以在一行中完成;但是,这看起来有点难看。也许会有更清洁的建议…
>>> df.reindex(columns=['n']+df.columns[:-1].tolist())
n l v
0 0 a 1
1 0 b 2
2 0 c 1
3 0 d 2
回答 2
如果要为所有行使用一个值:
df.insert(0,'name_of_column','')
df['name_of_column'] = value
编辑:
你也可以:
df.insert(0,'name_of_column',value)
回答 3
这是一个非常简单的答案(仅一行)。
在将“ n”列添加到df中之后,您可以按照以下步骤进行操作。
import pandas as pd
df = pd.DataFrame({'l':['a','b','c','d'], 'v':[1,2,1,2]})
df['n'] = 0
df
l v n
0 a 1 0
1 b 2 0
2 c 1 0
3 d 2 0
# here you can add the below code and it should work.
df = df[list('nlv')]
df
n l v
0 0 a 1
1 0 b 2
2 0 c 1
3 0 d 2
However, if you have words in your columns names instead of letters. It should include two brackets around your column names.
import pandas as pd
df = pd.DataFrame({'Upper':['a','b','c','d'], 'Lower':[1,2,1,2]})
df['Net'] = 0
df['Mid'] = 2
df['Zsore'] = 2
df
Upper Lower Net Mid Zsore
0 a 1 0 2 2
1 b 2 0 2 2
2 c 1 0 2 2
3 d 2 0 2 2
# here you can add below line and it should work
df = df[list(('Mid','Upper', 'Lower', 'Net','Zsore'))]
df
Mid Upper Lower Net Zsore
0 2 a 1 0 2
1 2 b 2 0 2
2 2 c 1 0 2
3 2 d 2 0 2