问题:如何在Python中创建特里

我对尝试和DAWG(直接非循环字图)感兴趣,并且已经阅读了很多有关它们的信息,但我不知道输出trie或DAWG文件应该是什么样。

  • 特里应该是嵌套词典的对象吗?每个字母分为几个字母,依此类推?
  • 如果存在100k或500k条目,对这样的词典执行的查找会很快吗?
  • 如何实现由多个单词组成的单词块,用-空格或空格分隔?
  • 如何将单词的前缀或后缀链接到结构的另一部分?(对于DAWG)

我想了解最佳的输出结构,以便弄清楚如何创建和使用一个结构。

我也希望DAWGtrie一起输出

我不想看到带有彼此链接的气泡的图形表示,我想知道将一组单词转换为尝试或DAWG后的输出对象。

I’m interested in tries and DAWGs (direct acyclic word graph) and I’ve been reading a lot about them but I don’t understand what should the output trie or DAWG file look like.

  • Should a trie be an object of nested dictionaries? Where each letter is divided in to letters and so on?
  • Would a lookup performed on such a dictionary be fast if there are 100k or 500k entries?
  • How to implement word-blocks consisting of more than one word separated with - or space?
  • How to link prefix or suffix of a word to another part in the structure? (for DAWG)

I want to understand the best output structure in order to figure out how to create and use one.

I would also appreciate what should be the output of a DAWG along with trie.

I do not want to see graphical representations with bubbles linked to each other, I want to know the output object once a set of words are turned into tries or DAWGs.


回答 0

展开实际上是正确的,因为有许多不同的方法可以实现Trie。对于大型,可伸缩的特里,嵌套字典可能会变得很麻烦-或至少在空​​间上效率低下。但是,由于您才刚刚入门,因此我认为这是最简单的方法;您trie只需几行就可以编写一个简单的代码。首先,一个构造特里的函数:

>>> _end = '_end_'
>>> 
>>> def make_trie(*words):
...     root = dict()
...     for word in words:
...         current_dict = root
...         for letter in word:
...             current_dict = current_dict.setdefault(letter, {})
...         current_dict[_end] = _end
...     return root
... 
>>> make_trie('foo', 'bar', 'baz', 'barz')
{'b': {'a': {'r': {'_end_': '_end_', 'z': {'_end_': '_end_'}}, 
             'z': {'_end_': '_end_'}}}, 
 'f': {'o': {'o': {'_end_': '_end_'}}}}

如果您不熟悉,它只会在字典中查找一个键(此处为letter_end)。如果存在键,则返回关联的值;否则,返回0。如果不是,它将为该键分配一个默认值并返回值({}_end)。(就像它的版本get也会更新字典。)

接下来,一个测试单词是否在特里的函数:

>>> def in_trie(trie, word):
...     current_dict = trie
...     for letter in word:
...         if letter not in current_dict:
...             return False
...         current_dict = current_dict[letter]
...     return _end in current_dict
... 
>>> in_trie(make_trie('foo', 'bar', 'baz', 'barz'), 'baz')
True
>>> in_trie(make_trie('foo', 'bar', 'baz', 'barz'), 'barz')
True
>>> in_trie(make_trie('foo', 'bar', 'baz', 'barz'), 'barzz')
False
>>> in_trie(make_trie('foo', 'bar', 'baz', 'barz'), 'bart')
False
>>> in_trie(make_trie('foo', 'bar', 'baz', 'barz'), 'ba')
False

我将把插入和拔出留给您作为练习。

当然,Unwind的建议不会很难。在速度方面可能存在一点缺点,即找到正确的子节点需要进行线性搜索。但是搜索将限于可能的字符数-如果包括,则为27 _end。而且,按照他的建议,创建大量的节点列表并按索引访问它们也无济于事。您最好只嵌套列表。

最后,我要补充一点,创建有向无环词图(DAWG)会有些复杂,因为您必须检测当前词与结构中另一个词共享后缀的情况。实际上,这可能会变得相当复杂,具体取决于您要如何构造DAWG!您可能需要学习一些有关Levenshtein 距离的知识才能正确使用它。

Unwind is essentially correct that there are many different ways to implement a trie; and for a large, scalable trie, nested dictionaries might become cumbersome — or at least space inefficient. But since you’re just getting started, I think that’s the easiest approach; you could code up a simple trie in just a few lines. First, a function to construct the trie:

>>> _end = '_end_'
>>> 
>>> def make_trie(*words):
...     root = dict()
...     for word in words:
...         current_dict = root
...         for letter in word:
...             current_dict = current_dict.setdefault(letter, {})
...         current_dict[_end] = _end
...     return root
... 
>>> make_trie('foo', 'bar', 'baz', 'barz')
{'b': {'a': {'r': {'_end_': '_end_', 'z': {'_end_': '_end_'}}, 
             'z': {'_end_': '_end_'}}}, 
 'f': {'o': {'o': {'_end_': '_end_'}}}}

If you’re not familiar with , it simply looks up a key in the dictionary (here, letter or _end). If the key is present, it returns the associated value; if not, it assigns a default value to that key and returns the value ({} or _end). (It’s like a version of get that also updates the dictionary.)

Next, a function to test whether the word is in the trie:

>>> def in_trie(trie, word):
...     current_dict = trie
...     for letter in word:
...         if letter not in current_dict:
...             return False
...         current_dict = current_dict[letter]
...     return _end in current_dict
... 
>>> in_trie(make_trie('foo', 'bar', 'baz', 'barz'), 'baz')
True
>>> in_trie(make_trie('foo', 'bar', 'baz', 'barz'), 'barz')
True
>>> in_trie(make_trie('foo', 'bar', 'baz', 'barz'), 'barzz')
False
>>> in_trie(make_trie('foo', 'bar', 'baz', 'barz'), 'bart')
False
>>> in_trie(make_trie('foo', 'bar', 'baz', 'barz'), 'ba')
False

I’ll leave insertion and removal to you as an exercise.

Of course, Unwind’s suggestion wouldn’t be much harder. There might be a slight speed disadvantage in that finding the correct sub-node would require a linear search. But the search would be limited to the number of possible characters — 27 if we include _end. Also, there’s nothing to be gained by creating a massive list of nodes and accessing them by index as he suggests; you might as well just nest the lists.

Finally, I’ll add that creating a directed acyclic word graph (DAWG) would be a bit more complex, because you have to detect situations in which your current word shares a suffix with another word in the structure. In fact, this can get rather complex, depending on how you want to structure the DAWG! You may have to learn some stuff about Levenshtein distance to get it right.


回答 1

看看这个:

https://github.com/kmike/marisa-trie

适用于Python的静态内存高效Trie结构(2.x和3.x)。

与标准Python字典相比,MARISA-trie中的字符串数据最多可占用50x-100x的内存;原始查找速度是可比的;trie还提供了诸如前缀搜索之类的快速高级方法。

基于marisa-trie C ++库。

这是某公司成功使用marisa trie的博客文章:https ://www.repustate.com/blog/sharing-large-data-structure-across-processes-python/

在Repustate,我们在文本分析中使用的许多数据模型都可以表示为简单的键值对或Python语言中的字典。在我们的特殊情况下,我们的词典非常庞大,每个词典都有几百MB,因此需要不断对其进行访问。实际上,对于给定的HTTP请求,可以访问4或5个模型,每个模型进行20-30次查找。因此,我们面临的问题是我们如何保持客户端的运行速度以及服务器的运行速度。

我找到了这个包,玛丽莎(marisa)尝试了一下,这是一个围绕玛丽莎(Marisa Trie)C ++实现的Python包装器。“ Marisa”是递归实现StorAge的匹配算法的首字母缩写。玛丽莎(Marisa)尝试的最大好处是,存储机制确实缩小了所需的内存量。Python插件的作者声称尺寸减少了50-100倍-我们的经验是相似的。

marisa trie软件包的优点在于,可以将基本的trie结构写入磁盘,然后通过内存映射对象读取。使用内存映射的marisa trie,现在可以满足我们的所有要求。我们服务器的内存使用量急剧下降了约40%,与使用Python的字典实现相比,我们的性能没有变化。

还有一些纯Python实现,尽管除非您在受限平台上,否则您希望使用上面的C ++支持的实现以获得最佳性能:

Have a look at this:

https://github.com/kmike/marisa-trie

Static memory-efficient Trie structures for Python (2.x and 3.x).

String data in a MARISA-trie may take up to 50x-100x less memory than in a standard Python dict; the raw lookup speed is comparable; trie also provides fast advanced methods like prefix search.

Based on marisa-trie C++ library.

Here’s a blog post from a company using marisa trie successfully:
https://www.repustate.com/blog/sharing-large-data-structure-across-processes-python/

At Repustate, much of our data models we use in our text analysis can be represented as simple key-value pairs, or dictionaries in Python lingo. In our particular case, our dictionaries are massive, a few hundred MB each, and they need to be accessed constantly. In fact for a given HTTP request, 4 or 5 models might be accessed, each doing 20-30 lookups. So the problem we face is how do we keep things fast for the client as well as light as possible for the server.

I found this package, marisa tries, which is a Python wrapper around a C++ implementation of a marisa trie. “Marisa” is an acronym for Matching Algorithm with Recursively Implemented StorAge. What’s great about marisa tries is the storage mechanism really shrinks how much memory you need. The author of the Python plugin claimed 50-100X reduction in size – our experience is similar.

What’s great about the marisa trie package is that the underlying trie structure can be written to disk and then read in via a memory mapped object. With a memory mapped marisa trie, all of our requirements are now met. Our server’s memory usage went down dramatically, by about 40%, and our performance was unchanged from when we used Python’s dictionary implementation.

There are also a couple of pure-python implementations, though unless you’re on a restricted platform you’d want to use the C++ backed implementation above for best performance:


回答 2

这是实现Trie的python软件包的列表:

Here is a list of python packages that implement Trie:

  • marisa-trie – a C++ based implementation.
  • python-trie – a simple pure python implementation.
  • PyTrie – a more advanced pure python implementation.
  • pygtrie – a pure python implementation by Google.
  • datrie – a double array trie implementation based on libdatrie.

回答 3

senderle的方法修改(上面)。我发现Python defaultdict是创建特里树或前缀树的理想选择。

from collections import defaultdict

class Trie:
    """
    Implement a trie with insert, search, and startsWith methods.
    """
    def __init__(self):
        self.root = defaultdict()

    # @param {string} word
    # @return {void}
    # Inserts a word into the trie.
    def insert(self, word):
        current = self.root
        for letter in word:
            current = current.setdefault(letter, {})
        current.setdefault("_end")

    # @param {string} word
    # @return {boolean}
    # Returns if the word is in the trie.
    def search(self, word):
        current = self.root
        for letter in word:
            if letter not in current:
                return False
            current = current[letter]
        if "_end" in current:
            return True
        return False

    # @param {string} prefix
    # @return {boolean}
    # Returns if there is any word in the trie
    # that starts with the given prefix.
    def startsWith(self, prefix):
        current = self.root
        for letter in prefix:
            if letter not in current:
                return False
            current = current[letter]
        return True

# Now test the class

test = Trie()
test.insert('helloworld')
test.insert('ilikeapple')
test.insert('helloz')

print test.search('hello')
print test.startsWith('hello')
print test.search('ilikeapple')

Modified from senderle‘s method (above). I found that Python’s defaultdict is ideal for creating a trie or a prefix tree.

from collections import defaultdict

class Trie:
    """
    Implement a trie with insert, search, and startsWith methods.
    """
    def __init__(self):
        self.root = defaultdict()

    # @param {string} word
    # @return {void}
    # Inserts a word into the trie.
    def insert(self, word):
        current = self.root
        for letter in word:
            current = current.setdefault(letter, {})
        current.setdefault("_end")

    # @param {string} word
    # @return {boolean}
    # Returns if the word is in the trie.
    def search(self, word):
        current = self.root
        for letter in word:
            if letter not in current:
                return False
            current = current[letter]
        if "_end" in current:
            return True
        return False

    # @param {string} prefix
    # @return {boolean}
    # Returns if there is any word in the trie
    # that starts with the given prefix.
    def startsWith(self, prefix):
        current = self.root
        for letter in prefix:
            if letter not in current:
                return False
            current = current[letter]
        return True

# Now test the class

test = Trie()
test.insert('helloworld')
test.insert('ilikeapple')
test.insert('helloz')

print test.search('hello')
print test.startsWith('hello')
print test.search('ilikeapple')

回答 4

没有“应该”;由你决定。各种实现将具有不同的性能特征,需要花费大量时间来实现,理解和正确使用。我认为,这对于整个软件开发来说都是典型的。

我可能首先会尝试创建一个到目前为止所有trie节点的全局列表,并将每个节点中的子指针表示为全局列表中的索引列表。对我来说,拥有一本字典来代表孩子的联系感觉太沉重了。

There’s no “should”; it’s up to you. Various implementations will have different performance characteristics, take various amounts of time to implement, understand, and get right. This is typical for software development as a whole, in my opinion.

I would probably first try having a global list of all trie nodes so far created, and representing the child-pointers in each node as a list of indices into the global list. Having a dictionary just to represent the child linking feels too heavy-weight, to me.


回答 5

如果您想将TRIE实现为Python类,请阅读以下内容,以撰写以下内容:

class Trie:

    def __init__(self):
        self.__final = False
        self.__nodes = {}

    def __repr__(self):
        return 'Trie<len={}, final={}>'.format(len(self), self.__final)

    def __getstate__(self):
        return self.__final, self.__nodes

    def __setstate__(self, state):
        self.__final, self.__nodes = state

    def __len__(self):
        return len(self.__nodes)

    def __bool__(self):
        return self.__final

    def __contains__(self, array):
        try:
            return self[array]
        except KeyError:
            return False

    def __iter__(self):
        yield self
        for node in self.__nodes.values():
            yield from node

    def __getitem__(self, array):
        return self.__get(array, False)

    def create(self, array):
        self.__get(array, True).__final = True

    def read(self):
        yield from self.__read([])

    def update(self, array):
        self[array].__final = True

    def delete(self, array):
        self[array].__final = False

    def prune(self):
        for key, value in tuple(self.__nodes.items()):
            if not value.prune():
                del self.__nodes[key]
        if not len(self):
            self.delete([])
        return self

    def __get(self, array, create):
        if array:
            head, *tail = array
            if create and head not in self.__nodes:
                self.__nodes[head] = Trie()
            return self.__nodes[head].__get(tail, create)
        return self

    def __read(self, name):
        if self.__final:
            yield name
        for key, value in self.__nodes.items():
            yield from value.__read(name + [key])

If you want a TRIE implemented as a Python class, here is something I wrote after reading about them:

class Trie:

    def __init__(self):
        self.__final = False
        self.__nodes = {}

    def __repr__(self):
        return 'Trie<len={}, final={}>'.format(len(self), self.__final)

    def __getstate__(self):
        return self.__final, self.__nodes

    def __setstate__(self, state):
        self.__final, self.__nodes = state

    def __len__(self):
        return len(self.__nodes)

    def __bool__(self):
        return self.__final

    def __contains__(self, array):
        try:
            return self[array]
        except KeyError:
            return False

    def __iter__(self):
        yield self
        for node in self.__nodes.values():
            yield from node

    def __getitem__(self, array):
        return self.__get(array, False)

    def create(self, array):
        self.__get(array, True).__final = True

    def read(self):
        yield from self.__read([])

    def update(self, array):
        self[array].__final = True

    def delete(self, array):
        self[array].__final = False

    def prune(self):
        for key, value in tuple(self.__nodes.items()):
            if not value.prune():
                del self.__nodes[key]
        if not len(self):
            self.delete([])
        return self

    def __get(self, array, create):
        if array:
            head, *tail = array
            if create and head not in self.__nodes:
                self.__nodes[head] = Trie()
            return self.__nodes[head].__get(tail, create)
        return self

    def __read(self, name):
        if self.__final:
            yield name
        for key, value in self.__nodes.items():
            yield from value.__read(name + [key])

回答 6

此版本正在使用递归

import pprint
from collections import deque

pp = pprint.PrettyPrinter(indent=4)

inp = raw_input("Enter a sentence to show as trie\n")
words = inp.split(" ")
trie = {}


def trie_recursion(trie_ds, word):
    try:
        letter = word.popleft()
        out = trie_recursion(trie_ds.get(letter, {}), word)
    except IndexError:
        # End of the word
        return {}

    # Dont update if letter already present
    if not trie_ds.has_key(letter):
        trie_ds[letter] = out

    return trie_ds

for word in words:
    # Go through each word
    trie = trie_recursion(trie, deque(word))

pprint.pprint(trie)

输出:

Coool👾 <algos>🚸  python trie.py
Enter a sentence to show as trie
foo bar baz fun
{
  'b': {
    'a': {
      'r': {},
      'z': {}
    }
  },
  'f': {
    'o': {
      'o': {}
    },
    'u': {
      'n': {}
    }
  }
}

This version is using recursion

import pprint
from collections import deque

pp = pprint.PrettyPrinter(indent=4)

inp = raw_input("Enter a sentence to show as trie\n")
words = inp.split(" ")
trie = {}


def trie_recursion(trie_ds, word):
    try:
        letter = word.popleft()
        out = trie_recursion(trie_ds.get(letter, {}), word)
    except IndexError:
        # End of the word
        return {}

    # Dont update if letter already present
    if not trie_ds.has_key(letter):
        trie_ds[letter] = out

    return trie_ds

for word in words:
    # Go through each word
    trie = trie_recursion(trie, deque(word))

pprint.pprint(trie)

Output:

Coool👾 <algos>🚸  python trie.py
Enter a sentence to show as trie
foo bar baz fun
{
  'b': {
    'a': {
      'r': {},
      'z': {}
    }
  },
  'f': {
    'o': {
      'o': {}
    },
    'u': {
      'n': {}
    }
  }
}

回答 7

from collections import defaultdict

定义特里:

_trie = lambda: defaultdict(_trie)

创建特里:

trie = _trie()
for s in ["cat", "bat", "rat", "cam"]:
    curr = trie
    for c in s:
        curr = curr[c]
    curr.setdefault("_end")

抬头:

def word_exist(trie, word):
    curr = trie
    for w in word:
        if w not in curr:
            return False
        curr = curr[w]
    return '_end' in curr

测试:

print(word_exist(trie, 'cam'))
from collections import defaultdict

Define Trie:

_trie = lambda: defaultdict(_trie)

Create Trie:

trie = _trie()
for s in ["cat", "bat", "rat", "cam"]:
    curr = trie
    for c in s:
        curr = curr[c]
    curr.setdefault("_end")

Lookup:

def word_exist(trie, word):
    curr = trie
    for w in word:
        if w not in curr:
            return False
        curr = curr[w]
    return '_end' in curr

Test:

print(word_exist(trie, 'cam'))

回答 8

class Trie:
    head = {}

    def add(self,word):

        cur = self.head
        for ch in word:
            if ch not in cur:
                cur[ch] = {}
            cur = cur[ch]
        cur['*'] = True

    def search(self,word):
        cur = self.head
        for ch in word:
            if ch not in cur:
                return False
            cur = cur[ch]

        if '*' in cur:
            return True
        else:
            return False
    def printf(self):
        print (self.head)

dictionary = Trie()
dictionary.add("hi")
#dictionary.add("hello")
#dictionary.add("eye")
#dictionary.add("hey")


print(dictionary.search("hi"))
print(dictionary.search("hello"))
print(dictionary.search("hel"))
print(dictionary.search("he"))
dictionary.printf()

True
False
False
False
{'h': {'i': {'*': True}}}
class Trie:
    head = {}

    def add(self,word):

        cur = self.head
        for ch in word:
            if ch not in cur:
                cur[ch] = {}
            cur = cur[ch]
        cur['*'] = True

    def search(self,word):
        cur = self.head
        for ch in word:
            if ch not in cur:
                return False
            cur = cur[ch]

        if '*' in cur:
            return True
        else:
            return False
    def printf(self):
        print (self.head)

dictionary = Trie()
dictionary.add("hi")
#dictionary.add("hello")
#dictionary.add("eye")
#dictionary.add("hey")


print(dictionary.search("hi"))
print(dictionary.search("hello"))
print(dictionary.search("hel"))
print(dictionary.search("he"))
dictionary.printf()

Out

True
False
False
False
{'h': {'i': {'*': True}}}

回答 9

Python类Trie


Trie数据结构可用于存储数据,O(L)其中L是字符串的长度,因此要插入N个字符串,时间复杂度是只能在删除O(NL)字符串的同时进行搜索O(L)

可以从https://github.com/Parikshit22/pytrie.git克隆

class Node:
    def __init__(self):
        self.children = [None]*26
        self.isend = False
        
class trie:
    def __init__(self,):
        self.__root = Node()
        
    def __len__(self,):
        return len(self.search_byprefix(''))
    
    def __str__(self):
        ll =  self.search_byprefix('')
        string = ''
        for i in ll:
            string+=i
            string+='\n'
        return string
        
    def chartoint(self,character):
        return ord(character)-ord('a')
    
    def remove(self,string):
        ptr = self.__root
        length = len(string)
        for idx in range(length):
            i = self.chartoint(string[idx])
            if ptr.children[i] is not None:
                ptr = ptr.children[i]
            else:
                raise ValueError("Keyword doesn't exist in trie")
        if ptr.isend is not True:
            raise ValueError("Keyword doesn't exist in trie")
        ptr.isend = False
        return
    
    def insert(self,string):
        ptr = self.__root
        length = len(string)
        for idx in range(length):
            i = self.chartoint(string[idx])
            if ptr.children[i] is not None:
                ptr = ptr.children[i]
            else:
                ptr.children[i] = Node()
                ptr = ptr.children[i]
        ptr.isend = True
        
    def search(self,string):
        ptr = self.__root
        length = len(string)
        for idx in range(length):
            i = self.chartoint(string[idx])
            if ptr.children[i] is not None:
                ptr = ptr.children[i]
            else:
                return False
        if ptr.isend is not True:
            return False
        return True
    
    def __getall(self,ptr,key,key_list):
        if ptr is None:
            key_list.append(key)
            return
        if ptr.isend==True:
            key_list.append(key)
        for i in range(26):
            if ptr.children[i]  is not None:
                self.__getall(ptr.children[i],key+chr(ord('a')+i),key_list)
        
    def search_byprefix(self,key):
        ptr = self.__root
        key_list = []
        length = len(key)
        for idx in range(length):
            i = self.chartoint(key[idx])
            if ptr.children[i] is not None:
                ptr = ptr.children[i]
            else:
                return None
        
        self.__getall(ptr,key,key_list)
        return key_list
        

t = trie()
t.insert("shubham")
t.insert("shubhi")
t.insert("minhaj")
t.insert("parikshit")
t.insert("pari")
t.insert("shubh")
t.insert("minakshi")
print(t.search("minhaj"))
print(t.search("shubhk"))
print(t.search_byprefix('m'))
print(len(t))
print(t.remove("minhaj"))
print(t)

代码输入

正确
错误
[‘minakshi’,’minhaj’]
7
minakshi
minhajsir
pari
parikshit
shubh
shubham
shubhi

Python Class for Trie


Trie Data Structure can be used to store data in O(L) where L is the length of the string so for inserting N strings time complexity would be O(NL) the string can be searched in O(L) only same goes for deletion.

Can be clone from https://github.com/Parikshit22/pytrie.git

class Node:
    def __init__(self):
        self.children = [None]*26
        self.isend = False
        
class trie:
    def __init__(self,):
        self.__root = Node()
        
    def __len__(self,):
        return len(self.search_byprefix(''))
    
    def __str__(self):
        ll =  self.search_byprefix('')
        string = ''
        for i in ll:
            string+=i
            string+='\n'
        return string
        
    def chartoint(self,character):
        return ord(character)-ord('a')
    
    def remove(self,string):
        ptr = self.__root
        length = len(string)
        for idx in range(length):
            i = self.chartoint(string[idx])
            if ptr.children[i] is not None:
                ptr = ptr.children[i]
            else:
                raise ValueError("Keyword doesn't exist in trie")
        if ptr.isend is not True:
            raise ValueError("Keyword doesn't exist in trie")
        ptr.isend = False
        return
    
    def insert(self,string):
        ptr = self.__root
        length = len(string)
        for idx in range(length):
            i = self.chartoint(string[idx])
            if ptr.children[i] is not None:
                ptr = ptr.children[i]
            else:
                ptr.children[i] = Node()
                ptr = ptr.children[i]
        ptr.isend = True
        
    def search(self,string):
        ptr = self.__root
        length = len(string)
        for idx in range(length):
            i = self.chartoint(string[idx])
            if ptr.children[i] is not None:
                ptr = ptr.children[i]
            else:
                return False
        if ptr.isend is not True:
            return False
        return True
    
    def __getall(self,ptr,key,key_list):
        if ptr is None:
            key_list.append(key)
            return
        if ptr.isend==True:
            key_list.append(key)
        for i in range(26):
            if ptr.children[i]  is not None:
                self.__getall(ptr.children[i],key+chr(ord('a')+i),key_list)
        
    def search_byprefix(self,key):
        ptr = self.__root
        key_list = []
        length = len(key)
        for idx in range(length):
            i = self.chartoint(key[idx])
            if ptr.children[i] is not None:
                ptr = ptr.children[i]
            else:
                return None
        
        self.__getall(ptr,key,key_list)
        return key_list
        

t = trie()
t.insert("shubham")
t.insert("shubhi")
t.insert("minhaj")
t.insert("parikshit")
t.insert("pari")
t.insert("shubh")
t.insert("minakshi")
print(t.search("minhaj"))
print(t.search("shubhk"))
print(t.search_byprefix('m'))
print(len(t))
print(t.remove("minhaj"))
print(t)

Code Oputpt

True
False
[‘minakshi’, ‘minhaj’]
7
minakshi
minhajsir
pari
parikshit
shubh
shubham
shubhi


声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。