问题:如何在Python中将RGB图像转换为灰度图像?

我试图用来matplotlib读取RGB图像并将其转换为灰度。

在matlab中,我使用以下代码:

img = rgb2gray(imread('image.png'));

matplotlib教程中,他们没有介绍它。他们只是读了图像

import matplotlib.image as mpimg
img = mpimg.imread('image.png')

然后他们将数组切成薄片,但这与从我所了解的将RGB转换为灰度不同。

lum_img = img[:,:,0]

我发现很难相信numpy或matplotlib没有将rgb转换为灰色的内置函数。这不是图像处理中的常见操作吗?

我写了一个非常简单的函数,可以imread在5分钟内使用导入的图像。这是非常低效的,但这就是为什么我希望内置一个专业的实现。

Sebastian改进了我的功能,但我仍然希望找到内置的功能。

Matlab(NTSC / PAL)的实现:

import numpy as np

def rgb2gray(rgb):

    r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2]
    gray = 0.2989 * r + 0.5870 * g + 0.1140 * b

    return gray

I’m trying to use matplotlib to read in an RGB image and convert it to grayscale.

In matlab I use this:

img = rgb2gray(imread('image.png'));

In the matplotlib tutorial they don’t cover it. They just read in the image

import matplotlib.image as mpimg
img = mpimg.imread('image.png')

and then they slice the array, but that’s not the same thing as converting RGB to grayscale from what I understand.

lum_img = img[:,:,0]

I find it hard to believe that numpy or matplotlib doesn’t have a built-in function to convert from rgb to gray. Isn’t this a common operation in image processing?

I wrote a very simple function that works with the image imported using imread in 5 minutes. It’s horribly inefficient, but that’s why I was hoping for a professional implementation built-in.

Sebastian has improved my function, but I’m still hoping to find the built-in one.

matlab’s (NTSC/PAL) implementation:

import numpy as np

def rgb2gray(rgb):

    r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2]
    gray = 0.2989 * r + 0.5870 * g + 0.1140 * b

    return gray

回答 0

Pillow怎么做:

from PIL import Image
img = Image.open('image.png').convert('LA')
img.save('greyscale.png')

使用matplotlib和公式

Y' = 0.2989 R + 0.5870 G + 0.1140 B 

你可以做:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg

def rgb2gray(rgb):
    return np.dot(rgb[...,:3], [0.2989, 0.5870, 0.1140])

img = mpimg.imread('image.png')     
gray = rgb2gray(img)    
plt.imshow(gray, cmap=plt.get_cmap('gray'), vmin=0, vmax=1)
plt.show()

How about doing it with Pillow:

from PIL import Image
img = Image.open('image.png').convert('LA')
img.save('greyscale.png')

Using matplotlib and the formula

Y' = 0.2989 R + 0.5870 G + 0.1140 B 

you could do:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg

def rgb2gray(rgb):
    return np.dot(rgb[...,:3], [0.2989, 0.5870, 0.1140])

img = mpimg.imread('image.png')     
gray = rgb2gray(img)    
plt.imshow(gray, cmap=plt.get_cmap('gray'), vmin=0, vmax=1)
plt.show()

回答 1

您还可以使用scikit-image,它提供了一些功能来转换图像ndarray,例如rgb2gray

from skimage import color
from skimage import io

img = color.rgb2gray(io.imread('image.png'))

注意:此转换中使用的重量已针对当代CRT荧光粉进行了校准:Y = 0.2125 R + 0.7154 G + 0.0721 B

或者,您可以通过以下方式读取灰度图像:

from skimage import io
img = io.imread('image.png', as_gray=True)

You can also use scikit-image, which provides some functions to convert an image in ndarray, like rgb2gray.

from skimage import color
from skimage import io

img = color.rgb2gray(io.imread('image.png'))

Notes: The weights used in this conversion are calibrated for contemporary CRT phosphors: Y = 0.2125 R + 0.7154 G + 0.0721 B

Alternatively, you can read image in grayscale by:

from skimage import io
img = io.imread('image.png', as_gray=True)

回答 2

在Ubuntu 16.04 LTS(配备SSD的Xeon E5 2670)上使用Python 3.5运行1000个RGBA PNG图像(224 x 256像素)时,对其中三种建议的方法进行了速度测试。

平均运行时间

pil : 1.037秒

scipy: 1.040秒

sk : 2.120秒

PIL和SciPy给出了相同的numpy数组(范围从0到255)。SkImage给出从0到1的数组。此外,颜色的转换略有不同,请参阅CUB-200数据集的示例

SkImage: 图像

PIL : 皮尔

SciPy : 科学

Original: 原版的

Diff : 在此处输入图片说明

  1. 性能

    run_times = dict(sk=list(), pil=list(), scipy=list())
    for t in range(100):
        start_time = time.time()
        for i in range(1000):
            z = random.choice(filenames_png)
            img = skimage.color.rgb2gray(skimage.io.imread(z))
        run_times['sk'].append(time.time() - start_time)

    start_time = time.time()
    for i in range(1000):
        z = random.choice(filenames_png)
        img = np.array(Image.open(z).convert('L'))
    run_times['pil'].append(time.time() - start_time)
    
    start_time = time.time()
    for i in range(1000):
        z = random.choice(filenames_png)
        img = scipy.ndimage.imread(z, mode='L')
    run_times['scipy'].append(time.time() - start_time)
    

    for k, v in run_times.items(): print('{:5}: {:0.3f} seconds'.format(k, sum(v) / len(v)))

  2. 输出量
    z = 'Cardinal_0007_3025810472.jpg'
    img1 = skimage.color.rgb2gray(skimage.io.imread(z)) * 255
    IPython.display.display(PIL.Image.fromarray(img1).convert('RGB'))
    img2 = np.array(Image.open(z).convert('L'))
    IPython.display.display(PIL.Image.fromarray(img2))
    img3 = scipy.ndimage.imread(z, mode='L')
    IPython.display.display(PIL.Image.fromarray(img3))
  3. 比较方式
    img_diff = np.ndarray(shape=img1.shape, dtype='float32')
    img_diff.fill(128)
    img_diff += (img1 - img3)
    img_diff -= img_diff.min()
    img_diff *= (255/img_diff.max())
    IPython.display.display(PIL.Image.fromarray(img_diff).convert('RGB'))
  4. 进口货
    import skimage.color
    import skimage.io
    import random
    import time
    from PIL import Image
    import numpy as np
    import scipy.ndimage
    import IPython.display
  5. 版本号
    skimage.version
    0.13.0
    scipy.version
    0.19.1
    np.version
    1.13.1

Three of the suggested methods were tested for speed with 1000 RGBA PNG images (224 x 256 pixels) running with Python 3.5 on Ubuntu 16.04 LTS (Xeon E5 2670 with SSD).

Average run times

pil : 1.037 seconds

scipy: 1.040 seconds

sk : 2.120 seconds

PIL and SciPy gave identical numpy arrays (ranging from 0 to 255). SkImage gives arrays from 0 to 1. In addition the colors are converted slightly different, see the example from the CUB-200 dataset.

SkImage: SkImage

PIL : PIL

SciPy : SciPy

Original: Original

Diff : enter image description here

Code

  1. Performance

    run_times = dict(sk=list(), pil=list(), scipy=list())
    for t in range(100):
        start_time = time.time()
        for i in range(1000):
            z = random.choice(filenames_png)
            img = skimage.color.rgb2gray(skimage.io.imread(z))
        run_times['sk'].append(time.time() - start_time)
    
    
    start_time = time.time()
    for i in range(1000):
        z = random.choice(filenames_png)
        img = np.array(Image.open(z).convert('L'))
    run_times['pil'].append(time.time() - start_time)
    
    start_time = time.time()
    for i in range(1000):
        z = random.choice(filenames_png)
        img = scipy.ndimage.imread(z, mode='L')
    run_times['scipy'].append(time.time() - start_time)
    

    for k, v in run_times.items(): print('{:5}: {:0.3f} seconds'.format(k, sum(v) / len(v)))

  2. Output
    z = 'Cardinal_0007_3025810472.jpg'
    img1 = skimage.color.rgb2gray(skimage.io.imread(z)) * 255
    IPython.display.display(PIL.Image.fromarray(img1).convert('RGB'))
    img2 = np.array(Image.open(z).convert('L'))
    IPython.display.display(PIL.Image.fromarray(img2))
    img3 = scipy.ndimage.imread(z, mode='L')
    IPython.display.display(PIL.Image.fromarray(img3))
    
  3. Comparison
    img_diff = np.ndarray(shape=img1.shape, dtype='float32')
    img_diff.fill(128)
    img_diff += (img1 - img3)
    img_diff -= img_diff.min()
    img_diff *= (255/img_diff.max())
    IPython.display.display(PIL.Image.fromarray(img_diff).convert('RGB'))
    
  4. Imports
    import skimage.color
    import skimage.io
    import random
    import time
    from PIL import Image
    import numpy as np
    import scipy.ndimage
    import IPython.display
    
  5. Versions
    skimage.version
    0.13.0
    scipy.version
    0.19.1
    np.version
    1.13.1
    

回答 3

您始终可以从一开始就使用imreadOpenCV 从灰度读取图像文件:

img = cv2.imread('messi5.jpg', 0)

此外,如果要将图像读取为RGB,请进行一些处理,然后转换为可以cvtcolor在OpenCV中使用的灰度:

gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

You can always read the image file as grayscale right from the beginning using imread from OpenCV:

img = cv2.imread('messi5.jpg', 0)

Furthermore, in case you want to read the image as RGB, do some processing and then convert to Gray Scale you could use cvtcolor from OpenCV:

gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

回答 4

最快和最新的方法是使用Pillow,通过pip install Pillow

代码如下:

from PIL import Image
img = Image.open('input_file.jpg').convert('L')
img.save('output_file.jpg')

The fastest and current way is to use Pillow, installed via pip install Pillow.

The code is then:

from PIL import Image
img = Image.open('input_file.jpg').convert('L')
img.save('output_file.jpg')

回答 5

该教程之所以作弊是因为它是以RGB编码的灰度图像开始的,因此他们只是将单个颜色通道切片并将其视为灰度。您需要执行的基本步骤是,将RGB颜色空间转换为使用近似luma / chroma模型(例如YUV / YIQ或HSL / HSV)进行编码的颜色空间,然后将类似luma的通道切成薄片并将其用作您的灰度图像。 matplotlib似乎没有提供转换为YUV / YIQ的机制,但是它确实允许您转换为HSV。

尝试使用,matplotlib.colors.rgb_to_hsv(img)然后从阵列中为灰度切片最后一个值(V)。它与亮度值并不完全相同,但这意味着您可以在其中完成所有操作matplotlib

背景:

或者,您可以使用PIL或内置colorsys.rgb_to_yiq()函数转换为具有真实亮度值的色彩空间。您也可以全力以赴,推出自己的仅亮度转换器,尽管这可能会过分杀了。

The tutorial is cheating because it is starting with a greyscale image encoded in RGB, so they are just slicing a single color channel and treating it as greyscale. The basic steps you need to do are to transform from the RGB colorspace to a colorspace that encodes with something approximating the luma/chroma model, such as YUV/YIQ or HSL/HSV, then slice off the luma-like channel and use that as your greyscale image. matplotlib does not appear to provide a mechanism to convert to YUV/YIQ, but it does let you convert to HSV.

Try using matplotlib.colors.rgb_to_hsv(img) then slicing the last value (V) from the array for your grayscale. It’s not quite the same as a luma value, but it means you can do it all in matplotlib.

Background:

Alternatively, you could use PIL or the builtin colorsys.rgb_to_yiq() to convert to a colorspace with a true luma value. You could also go all in and roll your own luma-only converter, though that’s probably overkill.


回答 6

使用这个公式

Y' = 0.299 R + 0.587 G + 0.114 B 

我们可以做的

import imageio
import numpy as np
import matplotlib.pyplot as plt

pic = imageio.imread('(image)')
gray = lambda rgb : np.dot(rgb[... , :3] , [0.299 , 0.587, 0.114]) 
gray = gray(pic)  
plt.imshow(gray, cmap = plt.get_cmap(name = 'gray'))

但是,那 GIMP将颜色转换为灰度图像软件有三种算法可以完成任务。

Using this formula

Y' = 0.299 R + 0.587 G + 0.114 B 

We can do

import imageio
import numpy as np
import matplotlib.pyplot as plt

pic = imageio.imread('(image)')
gray = lambda rgb : np.dot(rgb[... , :3] , [0.299 , 0.587, 0.114]) 
gray = gray(pic)  
plt.imshow(gray, cmap = plt.get_cmap(name = 'gray'))

However, the GIMP converting color to grayscale image software has three algorithms to do the task.


回答 7

如果您已经在使用NumPy / SciPy,则也可以使用

scipy.ndimage.imread(file_name, mode='L')

If you’re using NumPy/SciPy already you may as well use:

scipy.ndimage.imread(file_name, mode='L')


回答 8

你可以做:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg

def rgb_to_gray(img):
        grayImage = np.zeros(img.shape)
        R = np.array(img[:, :, 0])
        G = np.array(img[:, :, 1])
        B = np.array(img[:, :, 2])

        R = (R *.299)
        G = (G *.587)
        B = (B *.114)

        Avg = (R+G+B)
        grayImage = img

        for i in range(3):
           grayImage[:,:,i] = Avg

        return grayImage       

image = mpimg.imread("your_image.png")   
grayImage = rgb_to_gray(image)  
plt.imshow(grayImage)
plt.show()

you could do:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg

def rgb_to_gray(img):
        grayImage = np.zeros(img.shape)
        R = np.array(img[:, :, 0])
        G = np.array(img[:, :, 1])
        B = np.array(img[:, :, 2])

        R = (R *.299)
        G = (G *.587)
        B = (B *.114)

        Avg = (R+G+B)
        grayImage = img

        for i in range(3):
           grayImage[:,:,i] = Avg

        return grayImage       

image = mpimg.imread("your_image.png")   
grayImage = rgb_to_gray(image)  
plt.imshow(grayImage)
plt.show()

回答 9

使用img.Convert(),支持“ L”,“ RGB”和“ CMYK”。模式

import numpy as np
from PIL import Image

img = Image.open("IMG/center_2018_02_03_00_34_32_784.jpg")
img.convert('L')

print np.array(img)

输出:

[[135 123 134 ...,  30   3  14]
 [137 130 137 ...,   9  20  13]
 [170 177 183 ...,  14  10 250]
 ..., 
 [112  99  91 ...,  90  88  80]
 [ 95 103 111 ..., 102  85 103]
 [112  96  86 ..., 182 148 114]]

Use img.Convert(), supports “L”, “RGB” and “CMYK.” mode

import numpy as np
from PIL import Image

img = Image.open("IMG/center_2018_02_03_00_34_32_784.jpg")
img.convert('L')

print np.array(img)

Output:

[[135 123 134 ...,  30   3  14]
 [137 130 137 ...,   9  20  13]
 [170 177 183 ...,  14  10 250]
 ..., 
 [112  99  91 ...,  90  88  80]
 [ 95 103 111 ..., 102  85 103]
 [112  96  86 ..., 182 148 114]]

回答 10

我通过Google遇到了这个问题,寻找一种将已加载的图像转换为灰度的方法。

这是使用SciPy的一种方法:

import scipy.misc
import scipy.ndimage

# Load an example image
# Use scipy.ndimage.imread(file_name, mode='L') if you have your own
img = scipy.misc.face()

# Convert the image
R = img[:, :, 0]
G = img[:, :, 1]
B = img[:, :, 2]
img_gray = R * 299. / 1000 + G * 587. / 1000 + B * 114. / 1000

# Show the image
scipy.misc.imshow(img_gray)

I came to this question via Google, searching for a way to convert an already loaded image to grayscale.

Here is a way to do it with SciPy:

import scipy.misc
import scipy.ndimage

# Load an example image
# Use scipy.ndimage.imread(file_name, mode='L') if you have your own
img = scipy.misc.face()

# Convert the image
R = img[:, :, 0]
G = img[:, :, 1]
B = img[:, :, 2]
img_gray = R * 299. / 1000 + G * 587. / 1000 + B * 114. / 1000

# Show the image
scipy.misc.imshow(img_gray)

回答 11

image=myCamera.getImage().crop(xx,xx,xx,xx).scale(xx,xx).greyscale()

您可以greyscale()直接用于转换。

image=myCamera.getImage().crop(xx,xx,xx,xx).scale(xx,xx).greyscale()

You can use greyscale() directly for the transformation.


声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。