问题:如何在Python中获得当前的CPU和RAM使用率?

在Python中获取当前系统状态(当前CPU,RAM,可用磁盘空间等)的首选方式是什么?* nix和Windows平台的奖励积分。

似乎有几种方法可以从我的搜索中提取出来:

  1. 使用PSI之类的库(目前似乎尚未积极开发并且在多个平台上不受支持)或pystatgrab之类的(自2007年以来一直没有活动,它似乎也不支持Windows)。

  2. 使用平台特定的代码,例如os.popen("ps")在* nix系统和MEMORYSTATUSin中使用a 或类似代码ctypes.windll.kernel32(请参阅ActiveState上的此食谱对于Windows平台使用)。可以将Python类与所有这些代码段放在一起。

并不是说这些方法不好,而是已经有一种受支持的,跨平台的方法来做同样的事情?

What’s your preferred way of getting current system status (current CPU, RAM, free disk space, etc.) in Python? Bonus points for *nix and Windows platforms.

There seems to be a few possible ways of extracting that from my search:

  1. Using a library such as PSI (that currently seems not actively developed and not supported on multiple platform) or something like pystatgrab (again no activity since 2007 it seems and no support for Windows).

  2. Using platform specific code such as using a os.popen("ps") or similar for the *nix systems and MEMORYSTATUS in ctypes.windll.kernel32 (see this recipe on ActiveState) for the Windows platform. One could put a Python class together with all those code snippets.

It’s not that those methods are bad but is there already a well-supported, multi-platform way of doing the same thing?


回答 0

psutil库将为您提供各种平台上的一些系统信息(CPU /内存使用情况):

psutil是一个模块,提供了一个接口,该接口通过使用Python以可移植的方式检索有关正在运行的进程和系统利用率(CPU,内存)的信息,实现了ps,top和Windows任务管理器等工具提供的许多功能。

它当前支持32位和64位体系结构的Linux,Windows,OSX,Sun Solaris,FreeBSD,OpenBSD和NetBSD,Python版本从2.6到3.5(Python 2.4和2.5的用户可以使用2.1.3版本)。


更新:这是一些示例用法psutil

#!/usr/bin/env python
import psutil
# gives a single float value
psutil.cpu_percent()
# gives an object with many fields
psutil.virtual_memory()
# you can convert that object to a dictionary 
dict(psutil.virtual_memory()._asdict())

The psutil library will give you some system information (CPU / Memory usage) on a variety of platforms:

psutil is a module providing an interface for retrieving information on running processes and system utilization (CPU, memory) in a portable way by using Python, implementing many functionalities offered by tools like ps, top and Windows task manager.

It currently supports Linux, Windows, OSX, Sun Solaris, FreeBSD, OpenBSD and NetBSD, both 32-bit and 64-bit architectures, with Python versions from 2.6 to 3.5 (users of Python 2.4 and 2.5 may use 2.1.3 version).


UPDATE: Here is some example usages of psutil:

#!/usr/bin/env python
import psutil
# gives a single float value
psutil.cpu_percent()
# gives an object with many fields
psutil.virtual_memory()
# you can convert that object to a dictionary 
dict(psutil.virtual_memory()._asdict())

回答 1

使用psutil库。在Ubuntu 18.04上,截至2019年1月30日,pip安装了5.5.0(最新版本)。较旧的版本可能会有所不同。您可以通过在Python中执行以下操作来检查psutil的版本:

from __future__ import print_function  # for Python2
import psutil
print(psutil.__versi‌​on__)

要获取一些内存和CPU统计信息:

from __future__ import print_function
import psutil
print(psutil.cpu_percent())
print(psutil.virtual_memory())  # physical memory usage
print('memory % used:', psutil.virtual_memory()[2])

所述virtual_memory(元组)将具有%的内存使用的全系统。在Ubuntu 18.04上,这似乎被我高估了几个百分点。

您还可以获取当前Python实例使用的内存:

import os
import psutil
pid = os.getpid()
py = psutil.Process(pid)
memoryUse = py.memory_info()[0]/2.**30  # memory use in GB...I think
print('memory use:', memoryUse)

这给出了您的Python脚本的当前内存使用情况。

pypi的pypi页面上有一些更深入的示例。

Use the psutil library. On Ubuntu 18.04, pip installed 5.5.0 (latest version) as of 1-30-2019. Older versions may behave somewhat differently. You can check your version of psutil by doing this in Python:

from __future__ import print_function  # for Python2
import psutil
print(psutil.__versi‌​on__)

To get some memory and CPU stats:

from __future__ import print_function
import psutil
print(psutil.cpu_percent())
print(psutil.virtual_memory())  # physical memory usage
print('memory % used:', psutil.virtual_memory()[2])

The virtual_memory (tuple) will have the percent memory used system-wide. This seemed to be overestimated by a few percent for me on Ubuntu 18.04.

You can also get the memory used by the current Python instance:

import os
import psutil
pid = os.getpid()
py = psutil.Process(pid)
memoryUse = py.memory_info()[0]/2.**30  # memory use in GB...I think
print('memory use:', memoryUse)

which gives the current memory use of your Python script.

There are some more in-depth examples on the pypi page for psutil.


回答 2

仅适用于Linux:仅使用stdlib依赖项就可以保证RAM使用情况:

import os
tot_m, used_m, free_m = map(int, os.popen('free -t -m').readlines()[-1].split()[1:])

编辑:指定解决方案操作系统依赖性

Only for Linux: One-liner for the RAM usage with only stdlib dependency:

import os
tot_m, used_m, free_m = map(int, os.popen('free -t -m').readlines()[-1].split()[1:])

edit: specified solution OS dependency


回答 3

下面的代码,没有外部库为我工作。我在Python 2.7.9上进行了测试

CPU使用率

import os

    CPU_Pct=str(round(float(os.popen('''grep 'cpu ' /proc/stat | awk '{usage=($2+$4)*100/($2+$4+$5)} END {print usage }' ''').readline()),2))

    #print results
    print("CPU Usage = " + CPU_Pct)

和Ram使用情况,总计,二手和免费

import os
mem=str(os.popen('free -t -m').readlines())
"""
Get a whole line of memory output, it will be something like below
['             total       used       free     shared    buffers     cached\n', 
'Mem:           925        591        334         14         30        355\n', 
'-/+ buffers/cache:        205        719\n', 
'Swap:           99          0         99\n', 
'Total:        1025        591        434\n']
 So, we need total memory, usage and free memory.
 We should find the index of capital T which is unique at this string
"""
T_ind=mem.index('T')
"""
Than, we can recreate the string with this information. After T we have,
"Total:        " which has 14 characters, so we can start from index of T +14
and last 4 characters are also not necessary.
We can create a new sub-string using this information
"""
mem_G=mem[T_ind+14:-4]
"""
The result will be like
1025        603        422
we need to find first index of the first space, and we can start our substring
from from 0 to this index number, this will give us the string of total memory
"""
S1_ind=mem_G.index(' ')
mem_T=mem_G[0:S1_ind]
"""
Similarly we will create a new sub-string, which will start at the second value. 
The resulting string will be like
603        422
Again, we should find the index of first space and than the 
take the Used Memory and Free memory.
"""
mem_G1=mem_G[S1_ind+8:]
S2_ind=mem_G1.index(' ')
mem_U=mem_G1[0:S2_ind]

mem_F=mem_G1[S2_ind+8:]
print 'Summary = ' + mem_G
print 'Total Memory = ' + mem_T +' MB'
print 'Used Memory = ' + mem_U +' MB'
print 'Free Memory = ' + mem_F +' MB'

Below codes, without external libraries worked for me. I tested at Python 2.7.9

CPU Usage

import os

    CPU_Pct=str(round(float(os.popen('''grep 'cpu ' /proc/stat | awk '{usage=($2+$4)*100/($2+$4+$5)} END {print usage }' ''').readline()),2))

    #print results
    print("CPU Usage = " + CPU_Pct)

And Ram Usage, Total, Used and Free

import os
mem=str(os.popen('free -t -m').readlines())
"""
Get a whole line of memory output, it will be something like below
['             total       used       free     shared    buffers     cached\n', 
'Mem:           925        591        334         14         30        355\n', 
'-/+ buffers/cache:        205        719\n', 
'Swap:           99          0         99\n', 
'Total:        1025        591        434\n']
 So, we need total memory, usage and free memory.
 We should find the index of capital T which is unique at this string
"""
T_ind=mem.index('T')
"""
Than, we can recreate the string with this information. After T we have,
"Total:        " which has 14 characters, so we can start from index of T +14
and last 4 characters are also not necessary.
We can create a new sub-string using this information
"""
mem_G=mem[T_ind+14:-4]
"""
The result will be like
1025        603        422
we need to find first index of the first space, and we can start our substring
from from 0 to this index number, this will give us the string of total memory
"""
S1_ind=mem_G.index(' ')
mem_T=mem_G[0:S1_ind]
"""
Similarly we will create a new sub-string, which will start at the second value. 
The resulting string will be like
603        422
Again, we should find the index of first space and than the 
take the Used Memory and Free memory.
"""
mem_G1=mem_G[S1_ind+8:]
S2_ind=mem_G1.index(' ')
mem_U=mem_G1[0:S2_ind]

mem_F=mem_G1[S2_ind+8:]
print 'Summary = ' + mem_G
print 'Total Memory = ' + mem_T +' MB'
print 'Used Memory = ' + mem_U +' MB'
print 'Free Memory = ' + mem_F +' MB'

回答 4

这是我前几天整理的东西,仅是Windows,但可以帮助您获得部分所需的工作。

派生自:“用于sys的可用mem” http://msdn2.microsoft.com/zh-cn/library/aa455130.aspx

“单个过程信息和python脚本示例” http://www.microsoft.com/technet/scriptcenter/scripts/default.mspx?mfr=true

注意:WMI界面/过程也可用于执行类似的任务,因为当前的方法可以满足我的需求,所以我在这里不使用它,但是如果有朝一日需要扩展或改进它,则可能需要研究可用的WMI工具。 。

适用于python的WMI:

http://tgolden.sc.sabren.com/python/wmi.html

编码:

'''
Monitor window processes

derived from:
>for sys available mem
http://msdn2.microsoft.com/en-us/library/aa455130.aspx

> individual process information and python script examples
http://www.microsoft.com/technet/scriptcenter/scripts/default.mspx?mfr=true

NOTE: the WMI interface/process is also available for performing similar tasks
        I'm not using it here because the current method covers my needs, but if someday it's needed
        to extend or improve this module, then may want to investigate the WMI tools available.
        WMI for python:
        http://tgolden.sc.sabren.com/python/wmi.html
'''

__revision__ = 3

import win32com.client
from ctypes import *
from ctypes.wintypes import *
import pythoncom
import pywintypes
import datetime


class MEMORYSTATUS(Structure):
    _fields_ = [
                ('dwLength', DWORD),
                ('dwMemoryLoad', DWORD),
                ('dwTotalPhys', DWORD),
                ('dwAvailPhys', DWORD),
                ('dwTotalPageFile', DWORD),
                ('dwAvailPageFile', DWORD),
                ('dwTotalVirtual', DWORD),
                ('dwAvailVirtual', DWORD),
                ]


def winmem():
    x = MEMORYSTATUS() # create the structure
    windll.kernel32.GlobalMemoryStatus(byref(x)) # from cytypes.wintypes
    return x    


class process_stats:
    '''process_stats is able to provide counters of (all?) the items available in perfmon.
    Refer to the self.supported_types keys for the currently supported 'Performance Objects'

    To add logging support for other data you can derive the necessary data from perfmon:
    ---------
    perfmon can be run from windows 'run' menu by entering 'perfmon' and enter.
    Clicking on the '+' will open the 'add counters' menu,
    From the 'Add Counters' dialog, the 'Performance object' is the self.support_types key.
    --> Where spaces are removed and symbols are entered as text (Ex. # == Number, % == Percent)
    For the items you wish to log add the proper attribute name in the list in the self.supported_types dictionary,
    keyed by the 'Performance Object' name as mentioned above.
    ---------

    NOTE: The 'NETFramework_NETCLRMemory' key does not seem to log dotnet 2.0 properly.

    Initially the python implementation was derived from:
    http://www.microsoft.com/technet/scriptcenter/scripts/default.mspx?mfr=true
    '''
    def __init__(self,process_name_list=[],perf_object_list=[],filter_list=[]):
        '''process_names_list == the list of all processes to log (if empty log all)
        perf_object_list == list of process counters to log
        filter_list == list of text to filter
        print_results == boolean, output to stdout
        '''
        pythoncom.CoInitialize() # Needed when run by the same process in a thread

        self.process_name_list = process_name_list
        self.perf_object_list = perf_object_list
        self.filter_list = filter_list

        self.win32_perf_base = 'Win32_PerfFormattedData_'

        # Define new datatypes here!
        self.supported_types = {
                                    'NETFramework_NETCLRMemory':    [
                                                                        'Name',
                                                                        'NumberTotalCommittedBytes',
                                                                        'NumberTotalReservedBytes',
                                                                        'NumberInducedGC',    
                                                                        'NumberGen0Collections',
                                                                        'NumberGen1Collections',
                                                                        'NumberGen2Collections',
                                                                        'PromotedMemoryFromGen0',
                                                                        'PromotedMemoryFromGen1',
                                                                        'PercentTimeInGC',
                                                                        'LargeObjectHeapSize'
                                                                     ],

                                    'PerfProc_Process':              [
                                                                          'Name',
                                                                          'PrivateBytes',
                                                                          'ElapsedTime',
                                                                          'IDProcess',# pid
                                                                          'Caption',
                                                                          'CreatingProcessID',
                                                                          'Description',
                                                                          'IODataBytesPersec',
                                                                          'IODataOperationsPersec',
                                                                          'IOOtherBytesPersec',
                                                                          'IOOtherOperationsPersec',
                                                                          'IOReadBytesPersec',
                                                                          'IOReadOperationsPersec',
                                                                          'IOWriteBytesPersec',
                                                                          'IOWriteOperationsPersec'     
                                                                      ]
                                }

    def get_pid_stats(self, pid):
        this_proc_dict = {}

        pythoncom.CoInitialize() # Needed when run by the same process in a thread
        if not self.perf_object_list:
            perf_object_list = self.supported_types.keys()

        for counter_type in perf_object_list:
            strComputer = "."
            objWMIService = win32com.client.Dispatch("WbemScripting.SWbemLocator")
            objSWbemServices = objWMIService.ConnectServer(strComputer,"root\cimv2")

            query_str = '''Select * from %s%s''' % (self.win32_perf_base,counter_type)
            colItems = objSWbemServices.ExecQuery(query_str) # "Select * from Win32_PerfFormattedData_PerfProc_Process")# changed from Win32_Thread        

            if len(colItems) > 0:        
                for objItem in colItems:
                    if hasattr(objItem, 'IDProcess') and pid == objItem.IDProcess:

                            for attribute in self.supported_types[counter_type]:
                                eval_str = 'objItem.%s' % (attribute)
                                this_proc_dict[attribute] = eval(eval_str)

                            this_proc_dict['TimeStamp'] = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S.') + str(datetime.datetime.now().microsecond)[:3]
                            break

        return this_proc_dict      


    def get_stats(self):
        '''
        Show process stats for all processes in given list, if none given return all processes   
        If filter list is defined return only the items that match or contained in the list
        Returns a list of result dictionaries
        '''    
        pythoncom.CoInitialize() # Needed when run by the same process in a thread
        proc_results_list = []
        if not self.perf_object_list:
            perf_object_list = self.supported_types.keys()

        for counter_type in perf_object_list:
            strComputer = "."
            objWMIService = win32com.client.Dispatch("WbemScripting.SWbemLocator")
            objSWbemServices = objWMIService.ConnectServer(strComputer,"root\cimv2")

            query_str = '''Select * from %s%s''' % (self.win32_perf_base,counter_type)
            colItems = objSWbemServices.ExecQuery(query_str) # "Select * from Win32_PerfFormattedData_PerfProc_Process")# changed from Win32_Thread

            try:  
                if len(colItems) > 0:
                    for objItem in colItems:
                        found_flag = False
                        this_proc_dict = {}

                        if not self.process_name_list:
                            found_flag = True
                        else:
                            # Check if process name is in the process name list, allow print if it is
                            for proc_name in self.process_name_list:
                                obj_name = objItem.Name
                                if proc_name.lower() in obj_name.lower(): # will log if contains name
                                    found_flag = True
                                    break

                        if found_flag:
                            for attribute in self.supported_types[counter_type]:
                                eval_str = 'objItem.%s' % (attribute)
                                this_proc_dict[attribute] = eval(eval_str)

                            this_proc_dict['TimeStamp'] = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S.') + str(datetime.datetime.now().microsecond)[:3]
                            proc_results_list.append(this_proc_dict)

            except pywintypes.com_error, err_msg:
                # Ignore and continue (proc_mem_logger calls this function once per second)
                continue
        return proc_results_list     


def get_sys_stats():
    ''' Returns a dictionary of the system stats'''
    pythoncom.CoInitialize() # Needed when run by the same process in a thread
    x = winmem()

    sys_dict = { 
                    'dwAvailPhys': x.dwAvailPhys,
                    'dwAvailVirtual':x.dwAvailVirtual
                }
    return sys_dict


if __name__ == '__main__':
    # This area used for testing only
    sys_dict = get_sys_stats()

    stats_processor = process_stats(process_name_list=['process2watch'],perf_object_list=[],filter_list=[])
    proc_results = stats_processor.get_stats()

    for result_dict in proc_results:
        print result_dict

    import os
    this_pid = os.getpid()
    this_proc_results = stats_processor.get_pid_stats(this_pid)

    print 'this proc results:'
    print this_proc_results

http://monkut.webfactional.com/blog/archive/2009/1/21/windows-process-memory-logging-python

Here’s something I put together a while ago, it’s windows only but may help you get part of what you need done.

Derived from: “for sys available mem” http://msdn2.microsoft.com/en-us/library/aa455130.aspx

“individual process information and python script examples” http://www.microsoft.com/technet/scriptcenter/scripts/default.mspx?mfr=true

NOTE: the WMI interface/process is also available for performing similar tasks I’m not using it here because the current method covers my needs, but if someday it’s needed to extend or improve this, then may want to investigate the WMI tools a vailable.

WMI for python:

http://tgolden.sc.sabren.com/python/wmi.html

The code:

'''
Monitor window processes

derived from:
>for sys available mem
http://msdn2.microsoft.com/en-us/library/aa455130.aspx

> individual process information and python script examples
http://www.microsoft.com/technet/scriptcenter/scripts/default.mspx?mfr=true

NOTE: the WMI interface/process is also available for performing similar tasks
        I'm not using it here because the current method covers my needs, but if someday it's needed
        to extend or improve this module, then may want to investigate the WMI tools available.
        WMI for python:
        http://tgolden.sc.sabren.com/python/wmi.html
'''

__revision__ = 3

import win32com.client
from ctypes import *
from ctypes.wintypes import *
import pythoncom
import pywintypes
import datetime


class MEMORYSTATUS(Structure):
    _fields_ = [
                ('dwLength', DWORD),
                ('dwMemoryLoad', DWORD),
                ('dwTotalPhys', DWORD),
                ('dwAvailPhys', DWORD),
                ('dwTotalPageFile', DWORD),
                ('dwAvailPageFile', DWORD),
                ('dwTotalVirtual', DWORD),
                ('dwAvailVirtual', DWORD),
                ]


def winmem():
    x = MEMORYSTATUS() # create the structure
    windll.kernel32.GlobalMemoryStatus(byref(x)) # from cytypes.wintypes
    return x    


class process_stats:
    '''process_stats is able to provide counters of (all?) the items available in perfmon.
    Refer to the self.supported_types keys for the currently supported 'Performance Objects'

    To add logging support for other data you can derive the necessary data from perfmon:
    ---------
    perfmon can be run from windows 'run' menu by entering 'perfmon' and enter.
    Clicking on the '+' will open the 'add counters' menu,
    From the 'Add Counters' dialog, the 'Performance object' is the self.support_types key.
    --> Where spaces are removed and symbols are entered as text (Ex. # == Number, % == Percent)
    For the items you wish to log add the proper attribute name in the list in the self.supported_types dictionary,
    keyed by the 'Performance Object' name as mentioned above.
    ---------

    NOTE: The 'NETFramework_NETCLRMemory' key does not seem to log dotnet 2.0 properly.

    Initially the python implementation was derived from:
    http://www.microsoft.com/technet/scriptcenter/scripts/default.mspx?mfr=true
    '''
    def __init__(self,process_name_list=[],perf_object_list=[],filter_list=[]):
        '''process_names_list == the list of all processes to log (if empty log all)
        perf_object_list == list of process counters to log
        filter_list == list of text to filter
        print_results == boolean, output to stdout
        '''
        pythoncom.CoInitialize() # Needed when run by the same process in a thread

        self.process_name_list = process_name_list
        self.perf_object_list = perf_object_list
        self.filter_list = filter_list

        self.win32_perf_base = 'Win32_PerfFormattedData_'

        # Define new datatypes here!
        self.supported_types = {
                                    'NETFramework_NETCLRMemory':    [
                                                                        'Name',
                                                                        'NumberTotalCommittedBytes',
                                                                        'NumberTotalReservedBytes',
                                                                        'NumberInducedGC',    
                                                                        'NumberGen0Collections',
                                                                        'NumberGen1Collections',
                                                                        'NumberGen2Collections',
                                                                        'PromotedMemoryFromGen0',
                                                                        'PromotedMemoryFromGen1',
                                                                        'PercentTimeInGC',
                                                                        'LargeObjectHeapSize'
                                                                     ],

                                    'PerfProc_Process':              [
                                                                          'Name',
                                                                          'PrivateBytes',
                                                                          'ElapsedTime',
                                                                          'IDProcess',# pid
                                                                          'Caption',
                                                                          'CreatingProcessID',
                                                                          'Description',
                                                                          'IODataBytesPersec',
                                                                          'IODataOperationsPersec',
                                                                          'IOOtherBytesPersec',
                                                                          'IOOtherOperationsPersec',
                                                                          'IOReadBytesPersec',
                                                                          'IOReadOperationsPersec',
                                                                          'IOWriteBytesPersec',
                                                                          'IOWriteOperationsPersec'     
                                                                      ]
                                }

    def get_pid_stats(self, pid):
        this_proc_dict = {}

        pythoncom.CoInitialize() # Needed when run by the same process in a thread
        if not self.perf_object_list:
            perf_object_list = self.supported_types.keys()

        for counter_type in perf_object_list:
            strComputer = "."
            objWMIService = win32com.client.Dispatch("WbemScripting.SWbemLocator")
            objSWbemServices = objWMIService.ConnectServer(strComputer,"root\cimv2")

            query_str = '''Select * from %s%s''' % (self.win32_perf_base,counter_type)
            colItems = objSWbemServices.ExecQuery(query_str) # "Select * from Win32_PerfFormattedData_PerfProc_Process")# changed from Win32_Thread        

            if len(colItems) > 0:        
                for objItem in colItems:
                    if hasattr(objItem, 'IDProcess') and pid == objItem.IDProcess:

                            for attribute in self.supported_types[counter_type]:
                                eval_str = 'objItem.%s' % (attribute)
                                this_proc_dict[attribute] = eval(eval_str)

                            this_proc_dict['TimeStamp'] = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S.') + str(datetime.datetime.now().microsecond)[:3]
                            break

        return this_proc_dict      


    def get_stats(self):
        '''
        Show process stats for all processes in given list, if none given return all processes   
        If filter list is defined return only the items that match or contained in the list
        Returns a list of result dictionaries
        '''    
        pythoncom.CoInitialize() # Needed when run by the same process in a thread
        proc_results_list = []
        if not self.perf_object_list:
            perf_object_list = self.supported_types.keys()

        for counter_type in perf_object_list:
            strComputer = "."
            objWMIService = win32com.client.Dispatch("WbemScripting.SWbemLocator")
            objSWbemServices = objWMIService.ConnectServer(strComputer,"root\cimv2")

            query_str = '''Select * from %s%s''' % (self.win32_perf_base,counter_type)
            colItems = objSWbemServices.ExecQuery(query_str) # "Select * from Win32_PerfFormattedData_PerfProc_Process")# changed from Win32_Thread

            try:  
                if len(colItems) > 0:
                    for objItem in colItems:
                        found_flag = False
                        this_proc_dict = {}

                        if not self.process_name_list:
                            found_flag = True
                        else:
                            # Check if process name is in the process name list, allow print if it is
                            for proc_name in self.process_name_list:
                                obj_name = objItem.Name
                                if proc_name.lower() in obj_name.lower(): # will log if contains name
                                    found_flag = True
                                    break

                        if found_flag:
                            for attribute in self.supported_types[counter_type]:
                                eval_str = 'objItem.%s' % (attribute)
                                this_proc_dict[attribute] = eval(eval_str)

                            this_proc_dict['TimeStamp'] = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S.') + str(datetime.datetime.now().microsecond)[:3]
                            proc_results_list.append(this_proc_dict)

            except pywintypes.com_error, err_msg:
                # Ignore and continue (proc_mem_logger calls this function once per second)
                continue
        return proc_results_list     


def get_sys_stats():
    ''' Returns a dictionary of the system stats'''
    pythoncom.CoInitialize() # Needed when run by the same process in a thread
    x = winmem()

    sys_dict = { 
                    'dwAvailPhys': x.dwAvailPhys,
                    'dwAvailVirtual':x.dwAvailVirtual
                }
    return sys_dict


if __name__ == '__main__':
    # This area used for testing only
    sys_dict = get_sys_stats()

    stats_processor = process_stats(process_name_list=['process2watch'],perf_object_list=[],filter_list=[])
    proc_results = stats_processor.get_stats()

    for result_dict in proc_results:
        print result_dict

    import os
    this_pid = os.getpid()
    this_proc_results = stats_processor.get_pid_stats(this_pid)

    print 'this proc results:'
    print this_proc_results

http://monkut.webfactional.com/blog/archive/2009/1/21/windows-process-memory-logging-python


回答 5

我们之所以选择使用常规信息源,是因为我们可以发现空闲内存中的瞬时波动,并且认为查询meminfo数据源很有帮助。这也帮助我们获得了一些预先准备的相关参数。

import os

linux_filepath = "/proc/meminfo"
meminfo = dict(
    (i.split()[0].rstrip(":"), int(i.split()[1]))
    for i in open(linux_filepath).readlines()
)
meminfo["memory_total_gb"] = meminfo["MemTotal"] / (2 ** 20)
meminfo["memory_free_gb"] = meminfo["MemFree"] / (2 ** 20)
meminfo["memory_available_gb"] = meminfo["MemAvailable"] / (2 ** 20)

输出供参考(我们删除了所有换行符以进行进一步分析)

内存总数:1014500 kB内存空闲:562680 kB可用内存:646364 kB缓冲区:15144 kB缓存:210720 kB交换缓存:0 kB活动:261476 kB非活动:128888 kB活动(匿名):167092 kB非活动(匿名):20888 kB活动(文件) :94384 kB无效(文件):108000 kB无法启动:3652 kB锁定:3652 kB交换总量:0 kB交换免费:0 kB脏污:0 kB写回:0 kB AnonPages:168160 kB Mapped:81352 kB Shmem:21060 kB Slab:34492 kB SReclaimable:18044 kB SUnreclaim:16448 kB KernelStack:2672 kB PageTables:8180 kB NFS_Unstable:0 kB Bounce:0 kB WritebackTmp:0 kB CommitLimit:507248 kB Committed_AS:1038756 kB VmallocTotal:34359738367 kB kB Vmallocd: 0 kB AnonHugePages:88064 kB Cma总计:0 kB CmaFree:0 kB HugePages_Total:0 HugePages_Free:0 HugePages_Rsvd:0 HugePages_Surp:0 HugePagesize:2048 kB DirectMap4k:43008 kB DirectMap2M:1005568 kB

We chose to use usual information source for this because we could find instantaneous fluctuations in free memory and felt querying the meminfo data source was helpful. This also helped us get a few more related parameters that were pre-parsed.

Code

import os

linux_filepath = "/proc/meminfo"
meminfo = dict(
    (i.split()[0].rstrip(":"), int(i.split()[1]))
    for i in open(linux_filepath).readlines()
)
meminfo["memory_total_gb"] = meminfo["MemTotal"] / (2 ** 20)
meminfo["memory_free_gb"] = meminfo["MemFree"] / (2 ** 20)
meminfo["memory_available_gb"] = meminfo["MemAvailable"] / (2 ** 20)

Output for reference (we stripped all newlines for further analysis)

MemTotal: 1014500 kB MemFree: 562680 kB MemAvailable: 646364 kB Buffers: 15144 kB Cached: 210720 kB SwapCached: 0 kB Active: 261476 kB Inactive: 128888 kB Active(anon): 167092 kB Inactive(anon): 20888 kB Active(file): 94384 kB Inactive(file): 108000 kB Unevictable: 3652 kB Mlocked: 3652 kB SwapTotal: 0 kB SwapFree: 0 kB Dirty: 0 kB Writeback: 0 kB AnonPages: 168160 kB Mapped: 81352 kB Shmem: 21060 kB Slab: 34492 kB SReclaimable: 18044 kB SUnreclaim: 16448 kB KernelStack: 2672 kB PageTables: 8180 kB NFS_Unstable: 0 kB Bounce: 0 kB WritebackTmp: 0 kB CommitLimit: 507248 kB Committed_AS: 1038756 kB VmallocTotal: 34359738367 kB VmallocUsed: 0 kB VmallocChunk: 0 kB HardwareCorrupted: 0 kB AnonHugePages: 88064 kB CmaTotal: 0 kB CmaFree: 0 kB HugePages_Total: 0 HugePages_Free: 0 HugePages_Rsvd: 0 HugePages_Surp: 0 Hugepagesize: 2048 kB DirectMap4k: 43008 kB DirectMap2M: 1005568 kB


回答 6

我觉得这些答案是针对Python 2编写的,无论如何都没有人提及resource可用于Python 3 的标准软件包。它提供了用于获取给定进程(默认情况下为调用Python进程)的资源限制的命令。这与整个系统当前对资源的使用情况不同,但是可以解决一些相同的问题,例如“我想确保此脚本只使用X个RAM。”

I feel like these answers were written for Python 2, and in any case nobody’s made mention of the standard resource package that’s available for Python 3. It provides commands for obtaining the resource limits of a given process (the calling Python process by default). This isn’t the same as getting the current usage of resources by the system as a whole, but it could solve some of the same problems like e.g. “I want to make sure I only use X much RAM with this script.”


回答 7

“ …当前系统状态(当前CPU,RAM,可用磁盘空间等)”和“ * nix和Windows平台”可能很难实现。

操作系统在管理这些资源的方式上根本不同。实际上,它们在核心概念方面有所不同,例如定义什么才算是系统和什么才算是应用程序时间。

“可用磁盘空间”?什么算作“磁盘空间”?所有设备的所有分区?多重引导环境中的外部分区呢?

我认为Windows和* nix之间没有足够清晰的共识使之成为可能。实际上,在称为Windows的各种操作系统之间甚至可能没有达成共识。是否有一个适用于XP和Vista的Windows API?

“… current system status (current CPU, RAM, free disk space, etc.)” And “*nix and Windows platforms” can be a difficult combination to achieve.

The operating systems are fundamentally different in the way they manage these resources. Indeed, they differ in core concepts like defining what counts as system and what counts as application time.

“Free disk space”? What counts as “disk space?” All partitions of all devices? What about foreign partitions in a multi-boot environment?

I don’t think there’s a clear enough consensus between Windows and *nix that makes this possible. Indeed, there may not even be any consensus between the various operating systems called Windows. Is there a single Windows API that works for both XP and Vista?


回答 8

此脚本用于CPU使用率:

import os

def get_cpu_load():
    """ Returns a list CPU Loads"""
    result = []
    cmd = "WMIC CPU GET LoadPercentage "
    response = os.popen(cmd + ' 2>&1','r').read().strip().split("\r\n")
    for load in response[1:]:
       result.append(int(load))
    return result

if __name__ == '__main__':
    print get_cpu_load()

This script for CPU usage:

import os

def get_cpu_load():
    """ Returns a list CPU Loads"""
    result = []
    cmd = "WMIC CPU GET LoadPercentage "
    response = os.popen(cmd + ' 2>&1','r').read().strip().split("\r\n")
    for load in response[1:]:
       result.append(int(load))
    return result

if __name__ == '__main__':
    print get_cpu_load()

回答 9

  • 有关CPU的详细信息,请使用psutil

    https://psutil.readthedocs.io/en/latest/#cpu

  • 对于RAM频率(以MHz为单位),请使用内置的Linux库dmidecode并稍微控制输出;)。此命令需要root权限,因此也要提供密码。只需复制以下命令,将mypass替换为您的密码

import os

os.system("echo mypass | sudo -S dmidecode -t memory | grep 'Clock Speed' | cut -d ':' -f2")

——————-输出—————————
1600 MT / s
未知
1600 MT / s
未知0

  • 更具体地说
    [i for i in os.popen("echo mypass | sudo -S dmidecode -t memory | grep 'Clock Speed' | cut -d ':' -f2").read().split(' ') if i.isdigit()]

————————–输出———————– –
[‘1600’,’1600’]

  • For CPU details use psutil library

    https://psutil.readthedocs.io/en/latest/#cpu

  • For RAM Frequency (in MHz) use the built in Linux library dmidecode and manipulate the output a bit ;). this command needs root permission hence supply your password too. just copy the following commend replacing mypass with your password

import os

os.system("echo mypass | sudo -S dmidecode -t memory | grep 'Clock Speed' | cut -d ':' -f2")

——————- Output —————————
1600 MT/s
Unknown
1600 MT/s
Unknown 0

  • more specificly
    [i for i in os.popen("echo mypass | sudo -S dmidecode -t memory | grep 'Clock Speed' | cut -d ':' -f2").read().split(' ') if i.isdigit()]

————————– output ————————-
[‘1600’, ‘1600’]


回答 10

为了获得程序的逐行存储和时间分析,建议使用memory_profilerline_profiler

安装:

# Time profiler
$ pip install line_profiler
# Memory profiler
$ pip install memory_profiler
# Install the dependency for a faster analysis
$ pip install psutil

共同的部分是,您可以使用相应的修饰符指定要分析的功能。

示例:我的Python文件main.py中有几个要分析的功能。其中之一是linearRegressionfit()。我需要使用装饰器@profile,该装饰器可帮助我针对以下两个方面分析代码:时间和内存。

对函数定义进行以下更改

@profile
def linearRegressionfit(Xt,Yt,Xts,Yts):
    lr=LinearRegression()
    model=lr.fit(Xt,Yt)
    predict=lr.predict(Xts)
    # More Code

对于时间分析

跑:

$ kernprof -l -v main.py

输出量

Total time: 0.181071 s
File: main.py
Function: linearRegressionfit at line 35

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
    35                                           @profile
    36                                           def linearRegressionfit(Xt,Yt,Xts,Yts):
    37         1         52.0     52.0      0.1      lr=LinearRegression()
    38         1      28942.0  28942.0     75.2      model=lr.fit(Xt,Yt)
    39         1       1347.0   1347.0      3.5      predict=lr.predict(Xts)
    40                                           
    41         1       4924.0   4924.0     12.8      print("train Accuracy",lr.score(Xt,Yt))
    42         1       3242.0   3242.0      8.4      print("test Accuracy",lr.score(Xts,Yts))

对于内存分析

跑:

$ python -m memory_profiler main.py

输出量

Filename: main.py

Line #    Mem usage    Increment   Line Contents
================================================
    35  125.992 MiB  125.992 MiB   @profile
    36                             def linearRegressionfit(Xt,Yt,Xts,Yts):
    37  125.992 MiB    0.000 MiB       lr=LinearRegression()
    38  130.547 MiB    4.555 MiB       model=lr.fit(Xt,Yt)
    39  130.547 MiB    0.000 MiB       predict=lr.predict(Xts)
    40                             
    41  130.547 MiB    0.000 MiB       print("train Accuracy",lr.score(Xt,Yt))
    42  130.547 MiB    0.000 MiB       print("test Accuracy",lr.score(Xts,Yts))

同样,也可以matplotlib使用

$ mprof run main.py
$ mprof plot

在此处输入图片说明 注意:经过测试

line_profiler 版本== 3.0.2

memory_profiler 版本== 0.57.0

psutil 版本== 5.7.0

To get a line-by-line memory and time analysis of your program, I suggest using memory_profiler and line_profiler.

Installation:

# Time profiler
$ pip install line_profiler
# Memory profiler
$ pip install memory_profiler
# Install the dependency for a faster analysis
$ pip install psutil

The common part is, you specify which function you want to analyse by using the respective decorators.

Example: I have several functions in my Python file main.py that I want to analyse. One of them is linearRegressionfit(). I need to use the decorator @profile that helps me profile the code with respect to both: Time & Memory.

Make the following changes to the function definition

@profile
def linearRegressionfit(Xt,Yt,Xts,Yts):
    lr=LinearRegression()
    model=lr.fit(Xt,Yt)
    predict=lr.predict(Xts)
    # More Code

For Time Profiling,

Run:

$ kernprof -l -v main.py

Output

Total time: 0.181071 s
File: main.py
Function: linearRegressionfit at line 35

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
    35                                           @profile
    36                                           def linearRegressionfit(Xt,Yt,Xts,Yts):
    37         1         52.0     52.0      0.1      lr=LinearRegression()
    38         1      28942.0  28942.0     75.2      model=lr.fit(Xt,Yt)
    39         1       1347.0   1347.0      3.5      predict=lr.predict(Xts)
    40                                           
    41         1       4924.0   4924.0     12.8      print("train Accuracy",lr.score(Xt,Yt))
    42         1       3242.0   3242.0      8.4      print("test Accuracy",lr.score(Xts,Yts))

For Memory Profiling,

Run:

$ python -m memory_profiler main.py

Output

Filename: main.py

Line #    Mem usage    Increment   Line Contents
================================================
    35  125.992 MiB  125.992 MiB   @profile
    36                             def linearRegressionfit(Xt,Yt,Xts,Yts):
    37  125.992 MiB    0.000 MiB       lr=LinearRegression()
    38  130.547 MiB    4.555 MiB       model=lr.fit(Xt,Yt)
    39  130.547 MiB    0.000 MiB       predict=lr.predict(Xts)
    40                             
    41  130.547 MiB    0.000 MiB       print("train Accuracy",lr.score(Xt,Yt))
    42  130.547 MiB    0.000 MiB       print("test Accuracy",lr.score(Xts,Yts))

Also, the memory profiler results can also be plotted using matplotlib using

$ mprof run main.py
$ mprof plot

enter image description here Note: Tested on

line_profiler version == 3.0.2

memory_profiler version == 0.57.0

psutil version == 5.7.0


回答 11

您可以将psutil或psmem与子流程示例代码一起使用

import subprocess
cmd =   subprocess.Popen(['sudo','./ps_mem'],stdout=subprocess.PIPE,stderr=subprocess.PIPE) 
out,error = cmd.communicate() 
memory = out.splitlines()

参考 http://techarena51.com/index.php/how-to-install-python-3-and-flask-on-linux/

https://github.com/Leo-g/python-flask-cmd

You can use psutil or psmem with subprocess example code

import subprocess
cmd =   subprocess.Popen(['sudo','./ps_mem'],stdout=subprocess.PIPE,stderr=subprocess.PIPE) 
out,error = cmd.communicate() 
memory = out.splitlines()

Reference http://techarena51.com/index.php/how-to-install-python-3-and-flask-on-linux/

https://github.com/Leo-g/python-flask-cmd


回答 12

基于@Hrabal的cpu使用代码,这是我使用的:

from subprocess import Popen, PIPE

def get_cpu_usage():
    ''' Get CPU usage on Linux by reading /proc/stat '''

    sub = Popen(('grep', 'cpu', '/proc/stat'), stdout=PIPE, stderr=PIPE)
    top_vals = [int(val) for val in sub.communicate()[0].split('\n')[0].split[1:5]]

    return (top_vals[0] + top_vals[2]) * 100. /(top_vals[0] + top_vals[2] + top_vals[3])

Based on the cpu usage code by @Hrabal, this is what I use:

from subprocess import Popen, PIPE

def get_cpu_usage():
    ''' Get CPU usage on Linux by reading /proc/stat '''

    sub = Popen(('grep', 'cpu', '/proc/stat'), stdout=PIPE, stderr=PIPE)
    top_vals = [int(val) for val in sub.communicate()[0].split('\n')[0].split[1:5]]

    return (top_vals[0] + top_vals[2]) * 100. /(top_vals[0] + top_vals[2] + top_vals[3])

回答 13

我认为没有可用的受支持的多平台库。请记住,Python本身是用C编写的,因此,任何库都将像上面建议的那样,明智地决定要运行哪个特定于操作系统的代码段。

I don’t believe that there is a well-supported multi-platform library available. Remember that Python itself is written in C so any library is simply going to make a smart decision about which OS-specific code snippet to run, as you suggested above.


声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。