问题:如何检查pandas DataFrame是否为空?

如何检查大熊猫是否DataFrame为空?就我而言,如果终端DataFrame为空,我想在终端打印一些消息。

How to check whether a pandas DataFrame is empty? In my case I want to print some message in terminal if the DataFrame is empty.


回答 0

您可以使用该属性df.empty检查其是否为空:

if df.empty:
    print('DataFrame is empty!')

资料来源:熊猫文件

You can use the attribute df.empty to check whether it’s empty or not:

if df.empty:
    print('DataFrame is empty!')

Source: Pandas Documentation


回答 1

我使用的len功能。它比快得多emptylen(df.index)甚至更快。

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(10000, 4), columns=list('ABCD'))

def empty(df):
    return df.empty

def lenz(df):
    return len(df) == 0

def lenzi(df):
    return len(df.index) == 0

'''
%timeit empty(df)
%timeit lenz(df)
%timeit lenzi(df)

10000 loops, best of 3: 13.9 µs per loop
100000 loops, best of 3: 2.34 µs per loop
1000000 loops, best of 3: 695 ns per loop

len on index seems to be faster
'''

I use the len function. It’s much faster than empty. len(df.index) is even faster.

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(10000, 4), columns=list('ABCD'))

def empty(df):
    return df.empty

def lenz(df):
    return len(df) == 0

def lenzi(df):
    return len(df.index) == 0

'''
%timeit empty(df)
%timeit lenz(df)
%timeit lenzi(df)

10000 loops, best of 3: 13.9 µs per loop
100000 loops, best of 3: 2.34 µs per loop
1000000 loops, best of 3: 695 ns per loop

len on index seems to be faster
'''

回答 2

我更喜欢长途旅行。这些是我为避免使用try-except子句而进行的检查-

  1. 检查变量是否不为None
  2. 然后检查其是否为数据框和
  3. 确保它不为空

DATA是可疑变量-

DATA is not None and isinstance(DATA, pd.DataFrame) and not DATA.empty

I prefer going the long route. These are the checks I follow to avoid using a try-except clause –

  1. check if variable is not None
  2. then check if its a dataframe and
  3. make sure its not empty

Here, DATA is the suspect variable –

DATA is not None and isinstance(DATA, pd.DataFrame) and not DATA.empty

回答 3

似乎在该线程中接受的空定义是仅具有零行的数据帧。但是在零行零列空数据框和零行零列至少一列空数据框之间有区别。在每种情况下,索引的长度都是0,并且empty = True,如下所示:

示例1:具有0行和0列的空数据框

In [1]: import pandas as pd
        df1 = pd.DataFrame()
        df1
Out[1]: Empty DataFrame
        Columns: []
        Index: []

In [2]: len(df1.index)
Out[2]: 0

In [3]: df1.empty
Out[3]: True

示例2:具有0行和至少1列的空数据框

In [4]: df2 = pd.DataFrame({'AA' : [], 'BB' : []})
        df2
Out[4]: Empty DataFrame
        Columns: [AA, BB]
        Index: []

In [5]: len(df2.index)
Out[5]: 0

In [6]: df2.empty
Out[6]: True

区分没有标题和数据数据帧或只是没有数据数据帧的一种方法是测试列索引的长度。第一个加载的数据帧返回零列,第二个数据帧返回空列数。

In [7]: len(df1.columns)
Out[7]: 0

In [8]: len(df2.columns)
Out[8]: 2

To see if a dataframe is empty, I argue that one should test for the length of a dataframe’s columns index:

if len(df.columns) == 0: 1

Reason:

According to the Pandas Reference API, there is a distinction between:

  • an empty dataframe with 0 rows and 0 columns
  • an empty dataframe with rows containing NaN hence at least 1 column

Arguably, they are not the same. The other answers are imprecise in that df.empty, len(df), or len(df.index) make no distinction and return index is 0 and empty is True in both cases.

Examples

Example 1: An empty dataframe with 0 rows and 0 columns

In [1]: import pandas as pd
        df1 = pd.DataFrame()
        df1
Out[1]: Empty DataFrame
        Columns: []
        Index: []

In [2]: len(df1.index)  # or len(df1)
Out[2]: 0

In [3]: df1.empty
Out[3]: True

Example 2: A dataframe which is emptied to 0 rows but still retains n columns

In [4]: df2 = pd.DataFrame({'AA' : [1, 2, 3], 'BB' : [11, 22, 33]})
        df2
Out[4]:    AA  BB
        0   1  11
        1   2  22
        2   3  33

In [5]: df2 = df2[df2['AA'] == 5]
        df2
Out[5]: Empty DataFrame
        Columns: [AA, BB]
        Index: []

In [6]: len(df2.index)  # or len(df2)
Out[6]: 0

In [7]: df2.empty
Out[7]: True

Now, building on the previous examples, in which the index is 0 and empty is True. When reading the length of the columns index for the first loaded dataframe df1, it returns 0 columns to prove that it is indeed empty.

In [8]: len(df1.columns)
Out[8]: 0

In [9]: len(df2.columns)
Out[9]: 2

Critically, while the second dataframe df2 contains no data, it is not completely empty because it returns the amount of empty columns that persist.

Why it matters

Let’s add a new column to these dataframes to understand the implications:

# As expected, the empty column displays 1 series
In [10]: df1['CC'] = [111, 222, 333]
         df1
Out[10]:    CC
         0 111
         1 222
         2 333
In [11]: len(df1.columns)
Out[11]: 1

# Note the persisting series with rows containing `NaN` values in df2
In [12]: df2['CC'] = [111, 222, 333]
         df2
Out[12]:    AA  BB   CC
         0 NaN NaN  111
         1 NaN NaN  222
         2 NaN NaN  333
In [13]: len(df2.columns)
Out[13]: 3

It is evident that the original columns in df2 have re-surfaced. Therefore, it is prudent to instead read the length of the columns index with len(pandas.core.frame.DataFrame.columns) to see if a dataframe is empty.

Practical solution

# New dataframe df
In [1]: df = pd.DataFrame({'AA' : [1, 2, 3], 'BB' : [11, 22, 33]})
        df
Out[1]:    AA  BB
        0   1  11
        1   2  22
        2   3  33

# This data manipulation approach results in an empty df
# because of a subset of values that are not available (`NaN`)
In [2]: df = df[df['AA'] == 5]
        df
Out[2]: Empty DataFrame
        Columns: [AA, BB]
        Index: []

# NOTE: the df is empty, BUT the columns are persistent
In [3]: len(df.columns)
Out[3]: 2

# And accordingly, the other answers on this page
In [4]: len(df.index)  # or len(df)
Out[4]: 0

In [5]: df.empty
Out[5]: True
# SOLUTION: conditionally check for empty columns
In [6]: if len(df.columns) != 0:  # <--- here
            # Do something, e.g. 
            # drop any columns containing rows with `NaN`
            # to make the df really empty
            df = df.dropna(how='all', axis=1)
        df
Out[6]: Empty DataFrame
        Columns: []
        Index: []

# Testing shows it is indeed empty now
In [7]: len(df.columns)
Out[7]: 0

Adding a new data series works as expected without the re-surfacing of empty columns (factually, without any series that were containing rows with only NaN):

In [8]: df['CC'] = [111, 222, 333]
         df
Out[8]:    CC
         0 111
         1 222
         2 333
In [9]: len(df.columns)
Out[9]: 1

回答 4

1)如果一个DataFrame具有Nan和Non Null值,并且您想查找该DataFrame是否
是否为空,然后尝试此代码。
2)什么时候会发生这种情况? 
使用单个函数绘制多个DataFrame时会发生这种情况 
作为参数传递的参数。在这种情况下,该函数甚至尝试绘制数据 
当DataFrame为空并因此绘制一个空图时!
如果仅显示“ DataFrame has no data”消息,将很有意义。
3)为什么? 
如果DataFrame为空(即完全不包含任何数据。请使用Nan值来提醒您DataFrame) 
被认为是非空的),那么最好不要绘制而是显示一条消息:
假设我们有两个DataFrames df1和df2。
函数myfunc接受任何DataFrame(在这种情况下为df1和df2)并打印一条消息 
如果DataFrame为空(而不是绘制):
df1                     df2
col1 col2           col1 col2 
Nan   2              Nan  Nan 
2     Nan            Nan  Nan  

和功能:

def myfunc(df):
  if (df.count().sum())>0: ##count the total number of non Nan values.Equal to 0 if DataFrame is empty
     print('not empty')
     df.plot(kind='barh')
  else:
     display a message instead of plotting if it is empty
     print('empty')
1) If a DataFrame has got Nan and Non Null values and you want to find whether the DataFrame
is empty or not then try this code.
2) when this situation can happen? 
This situation happens when a single function is used to plot more than one DataFrame 
which are passed as parameter.In such a situation the function try to plot the data even 
when a DataFrame is empty and thus plot an empty figure!.
It will make sense if simply display 'DataFrame has no data' message.
3) why? 
if a DataFrame is empty(i.e. contain no data at all.Mind you DataFrame with Nan values 
is considered non empty) then it is desirable not to plot but put out a message :
Suppose we have two DataFrames df1 and df2.
The function myfunc takes any DataFrame(df1 and df2 in this case) and print a message 
if a DataFrame is empty(instead of plotting):
df1                     df2
col1 col2           col1 col2 
Nan   2              Nan  Nan 
2     Nan            Nan  Nan  

and the function:

def myfunc(df):
  if (df.count().sum())>0: ##count the total number of non Nan values.Equal to 0 if DataFrame is empty
     print('not empty')
     df.plot(kind='barh')
  else:
     display a message instead of plotting if it is empty
     print('empty')

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。