问题:如何检测圣诞树?[关闭]

可以使用哪些图像处理技术来实现检测以下图像中显示的圣诞树的应用程序?

我正在寻找可以在所有这些图像上使用的解决方案。因此,需要训练haar级联分类器模板匹配的方法不是很有趣。

我正在寻找可以使用任何编程语言编写的东西,只要它仅使用开源技术即可。该解决方案必须使用此问题上共享的图像进行测试。有6个输入图像,答案应显示每个图像的处理结果。最后,对于每个输出图像,必须绘制红线以包围检测到的树。

您将如何以编程方式检测这些图像中的树木?

Which image processing techniques could be used to implement an application that detects the Christmas trees displayed in the following images?

I’m searching for solutions that are going to work on all these images. Therefore, approaches that require training haar cascade classifiers or template matching are not very interesting.

I’m looking for something that can be written in any programming language, as long as it uses only Open Source technologies. The solution must be tested with the images that are shared on this question. There are 6 input images and the answer should display the results of processing each of them. Finally, for each output image there must be red lines draw to surround the detected tree.

How would you go about programmatically detecting the trees in these images?


回答 0

我有一种我认为很有趣的方法,与其他方法有所不同。与其他方法相比,我的方法的主要区别在于如何执行图像分割步骤-我使用了来自python scikit-learn 的DBSCAN聚类算法;它经过优化,可找到可能不一定具有单个清晰质心的某种无定形形状。

在最高层,我的方法很简单,可以分解为大约3个步骤。首先,我应用一个阈值(或者实际上是两个单独且不同的阈值的逻辑“或”)。与其他许多答案一样,我假设圣诞树将是场景中较亮的对象之一,因此第一个阈值只是一个简单的单色亮度测试;0-255范围(黑色为0,白色为255)上的值大于220的所有像素将保存到二进制黑白图像。第二个阈值尝试寻找红光和黄光,这在六张图像的左上角和右下角的树木中尤为突出,并且在大多数照片中普遍使用的蓝绿色背景下表现出色。我将rgb图像转换为hsv空间,并要求色相在0.0-1.0范围内小于0.2(大致对应于黄色和绿色之间的边界)或大于0.95(对应于紫色与红色之间的边界),另外我还要求明亮,饱和的颜色:饱和度和值都必须高于0.7。这两个阈值过程的结果在逻辑上“或”在一起,黑白二进制图像的结果矩阵如下所示:

对HSV和单色亮度进行阈值设置后的圣诞树

您可以清楚地看到,每个图像都有一个大的像素簇,大致对应于每棵树的位置,加上一些图像还具有一些其他的小簇,它们对应于某些建筑物的窗户上的灯光,或者对应于背景场景在地平线上。下一步是使计算机识别这些是单独的群集,并使用群集成员ID号正确标记每个像素。

为此,我选择了DBSCAN。相对于其他集群算法,这里有一个很好的视觉比较,可以比较DBSCAN通常的行为。正如我之前说的,它非常适合非晶形形状。此处显示了DBSCAN的输出,其中每个集群以不同的颜色绘制:

DBSCAN集群输出

查看此结果时,需要注意一些事项。首先,DBSCAN要求用户设置一个“接近”参数以调节其行为,该参数有效地控制了一对点必须分开的程度,以便算法声明新的单独簇,而不是将测试点聚结到已经存在的集群。我将此值设置为每个图像对角线大小的0.04倍。由于图像的大小从大约VGA到大约HD 1080不等,因此这种比例相关的定义至关重要。

另一个值得注意的点是,在scikit-learn中实现的DBSCAN算法具有内存限制,对于此示例中的某些较大图像而言,这是相当大的挑战。因此,对于一些较大的图像,我实际上必须每个群集“抽取”(即,仅保留每个第3或第4像素并丢弃其他像素),以保持在此范围内。作为这种剔除处理的结果,在某些较大的图像上很难看到其余的单个稀疏像素。因此,仅出于显示目的,上述图像中的颜色编码像素已被有效地稍微“扩张”了一点,以使其更加突出。出于叙述目的,这纯粹是一种修饰操作;尽管在我的代码中有评论提到此膨胀,

识别并标记了聚类后,第三步也是最后一步很容易:我只是在每个图像中选取最大的聚类(在这种情况下,我选择根据成员像素的总数来衡量“大小”,尽管可以却很容易地使用某种类型的度量标准来衡量物理范围)并计算该集群的凸包。凸包然后成为树的边界。通过此方法计算的六个凸包在下面以红色显示:

带有计算边界的圣诞树

源代码是为Python 2.7.6编写的,它取决于numpyscipymatplotlibscikit-learn。我将其分为两部分。第一部分负责实际的图像处理:

from PIL import Image
import numpy as np
import scipy as sp
import matplotlib.colors as colors
from sklearn.cluster import DBSCAN
from math import ceil, sqrt

"""
Inputs:

    rgbimg:         [M,N,3] numpy array containing (uint, 0-255) color image

    hueleftthr:     Scalar constant to select maximum allowed hue in the
                    yellow-green region

    huerightthr:    Scalar constant to select minimum allowed hue in the
                    blue-purple region

    satthr:         Scalar constant to select minimum allowed saturation

    valthr:         Scalar constant to select minimum allowed value

    monothr:        Scalar constant to select minimum allowed monochrome
                    brightness

    maxpoints:      Scalar constant maximum number of pixels to forward to
                    the DBSCAN clustering algorithm

    proxthresh:     Proximity threshold to use for DBSCAN, as a fraction of
                    the diagonal size of the image

Outputs:

    borderseg:      [K,2,2] Nested list containing K pairs of x- and y- pixel
                    values for drawing the tree border

    X:              [P,2] List of pixels that passed the threshold step

    labels:         [Q,2] List of cluster labels for points in Xslice (see
                    below)

    Xslice:         [Q,2] Reduced list of pixels to be passed to DBSCAN

"""

def findtree(rgbimg, hueleftthr=0.2, huerightthr=0.95, satthr=0.7, 
             valthr=0.7, monothr=220, maxpoints=5000, proxthresh=0.04):

    # Convert rgb image to monochrome for
    gryimg = np.asarray(Image.fromarray(rgbimg).convert('L'))
    # Convert rgb image (uint, 0-255) to hsv (float, 0.0-1.0)
    hsvimg = colors.rgb_to_hsv(rgbimg.astype(float)/255)

    # Initialize binary thresholded image
    binimg = np.zeros((rgbimg.shape[0], rgbimg.shape[1]))
    # Find pixels with hue<0.2 or hue>0.95 (red or yellow) and saturation/value
    # both greater than 0.7 (saturated and bright)--tends to coincide with
    # ornamental lights on trees in some of the images
    boolidx = np.logical_and(
                np.logical_and(
                  np.logical_or((hsvimg[:,:,0] < hueleftthr),
                                (hsvimg[:,:,0] > huerightthr)),
                                (hsvimg[:,:,1] > satthr)),
                                (hsvimg[:,:,2] > valthr))
    # Find pixels that meet hsv criterion
    binimg[np.where(boolidx)] = 255
    # Add pixels that meet grayscale brightness criterion
    binimg[np.where(gryimg > monothr)] = 255

    # Prepare thresholded points for DBSCAN clustering algorithm
    X = np.transpose(np.where(binimg == 255))
    Xslice = X
    nsample = len(Xslice)
    if nsample > maxpoints:
        # Make sure number of points does not exceed DBSCAN maximum capacity
        Xslice = X[range(0,nsample,int(ceil(float(nsample)/maxpoints)))]

    # Translate DBSCAN proximity threshold to units of pixels and run DBSCAN
    pixproxthr = proxthresh * sqrt(binimg.shape[0]**2 + binimg.shape[1]**2)
    db = DBSCAN(eps=pixproxthr, min_samples=10).fit(Xslice)
    labels = db.labels_.astype(int)

    # Find the largest cluster (i.e., with most points) and obtain convex hull   
    unique_labels = set(labels)
    maxclustpt = 0
    for k in unique_labels:
        class_members = [index[0] for index in np.argwhere(labels == k)]
        if len(class_members) > maxclustpt:
            points = Xslice[class_members]
            hull = sp.spatial.ConvexHull(points)
            maxclustpt = len(class_members)
            borderseg = [[points[simplex,0], points[simplex,1]] for simplex
                          in hull.simplices]

    return borderseg, X, labels, Xslice

第二部分是用户级脚本,该脚本调用第一个文件并生成上面的所有图:

#!/usr/bin/env python

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from findtree import findtree

# Image files to process
fname = ['nmzwj.png', 'aVZhC.png', '2K9EF.png',
         'YowlH.png', '2y4o5.png', 'FWhSP.png']

# Initialize figures
fgsz = (16,7)        
figthresh = plt.figure(figsize=fgsz, facecolor='w')
figclust  = plt.figure(figsize=fgsz, facecolor='w')
figcltwo  = plt.figure(figsize=fgsz, facecolor='w')
figborder = plt.figure(figsize=fgsz, facecolor='w')
figthresh.canvas.set_window_title('Thresholded HSV and Monochrome Brightness')
figclust.canvas.set_window_title('DBSCAN Clusters (Raw Pixel Output)')
figcltwo.canvas.set_window_title('DBSCAN Clusters (Slightly Dilated for Display)')
figborder.canvas.set_window_title('Trees with Borders')

for ii, name in zip(range(len(fname)), fname):
    # Open the file and convert to rgb image
    rgbimg = np.asarray(Image.open(name))

    # Get the tree borders as well as a bunch of other intermediate values
    # that will be used to illustrate how the algorithm works
    borderseg, X, labels, Xslice = findtree(rgbimg)

    # Display thresholded images
    axthresh = figthresh.add_subplot(2,3,ii+1)
    axthresh.set_xticks([])
    axthresh.set_yticks([])
    binimg = np.zeros((rgbimg.shape[0], rgbimg.shape[1]))
    for v, h in X:
        binimg[v,h] = 255
    axthresh.imshow(binimg, interpolation='nearest', cmap='Greys')

    # Display color-coded clusters
    axclust = figclust.add_subplot(2,3,ii+1) # Raw version
    axclust.set_xticks([])
    axclust.set_yticks([])
    axcltwo = figcltwo.add_subplot(2,3,ii+1) # Dilated slightly for display only
    axcltwo.set_xticks([])
    axcltwo.set_yticks([])
    axcltwo.imshow(binimg, interpolation='nearest', cmap='Greys')
    clustimg = np.ones(rgbimg.shape)    
    unique_labels = set(labels)
    # Generate a unique color for each cluster 
    plcol = cm.rainbow_r(np.linspace(0, 1, len(unique_labels)))
    for lbl, pix in zip(labels, Xslice):
        for col, unqlbl in zip(plcol, unique_labels):
            if lbl == unqlbl:
                # Cluster label of -1 indicates no cluster membership;
                # override default color with black
                if lbl == -1:
                    col = [0.0, 0.0, 0.0, 1.0]
                # Raw version
                for ij in range(3):
                    clustimg[pix[0],pix[1],ij] = col[ij]
                # Dilated just for display
                axcltwo.plot(pix[1], pix[0], 'o', markerfacecolor=col, 
                    markersize=1, markeredgecolor=col)
    axclust.imshow(clustimg)
    axcltwo.set_xlim(0, binimg.shape[1]-1)
    axcltwo.set_ylim(binimg.shape[0], -1)

    # Plot original images with read borders around the trees
    axborder = figborder.add_subplot(2,3,ii+1)
    axborder.set_axis_off()
    axborder.imshow(rgbimg, interpolation='nearest')
    for vseg, hseg in borderseg:
        axborder.plot(hseg, vseg, 'r-', lw=3)
    axborder.set_xlim(0, binimg.shape[1]-1)
    axborder.set_ylim(binimg.shape[0], -1)

plt.show()

I have an approach which I think is interesting and a bit different from the rest. The main difference in my approach, compared to some of the others, is in how the image segmentation step is performed–I used the DBSCAN clustering algorithm from Python’s scikit-learn; it’s optimized for finding somewhat amorphous shapes that may not necessarily have a single clear centroid.

At the top level, my approach is fairly simple and can be broken down into about 3 steps. First I apply a threshold (or actually, the logical “or” of two separate and distinct thresholds). As with many of the other answers, I assumed that the Christmas tree would be one of the brighter objects in the scene, so the first threshold is just a simple monochrome brightness test; any pixels with values above 220 on a 0-255 scale (where black is 0 and white is 255) are saved to a binary black-and-white image. The second threshold tries to look for red and yellow lights, which are particularly prominent in the trees in the upper left and lower right of the six images, and stand out well against the blue-green background which is prevalent in most of the photos. I convert the rgb image to hsv space, and require that the hue is either less than 0.2 on a 0.0-1.0 scale (corresponding roughly to the border between yellow and green) or greater than 0.95 (corresponding to the border between purple and red) and additionally I require bright, saturated colors: saturation and value must both be above 0.7. The results of the two threshold procedures are logically “or”-ed together, and the resulting matrix of black-and-white binary images is shown below:

Christmas trees, after thresholding on HSV as well as monochrome brightness

You can clearly see that each image has one large cluster of pixels roughly corresponding to the location of each tree, plus a few of the images also have some other small clusters corresponding either to lights in the windows of some of the buildings, or to a background scene on the horizon. The next step is to get the computer to recognize that these are separate clusters, and label each pixel correctly with a cluster membership ID number.

For this task I chose DBSCAN. There is a pretty good visual comparison of how DBSCAN typically behaves, relative to other clustering algorithms, available here. As I said earlier, it does well with amorphous shapes. The output of DBSCAN, with each cluster plotted in a different color, is shown here:

DBSCAN clustering output

There are a few things to be aware of when looking at this result. First is that DBSCAN requires the user to set a “proximity” parameter in order to regulate its behavior, which effectively controls how separated a pair of points must be in order for the algorithm to declare a new separate cluster rather than agglomerating a test point onto an already pre-existing cluster. I set this value to be 0.04 times the size along the diagonal of each image. Since the images vary in size from roughly VGA up to about HD 1080, this type of scale-relative definition is critical.

Another point worth noting is that the DBSCAN algorithm as it is implemented in scikit-learn has memory limits which are fairly challenging for some of the larger images in this sample. Therefore, for a few of the larger images, I actually had to “decimate” (i.e., retain only every 3rd or 4th pixel and drop the others) each cluster in order to stay within this limit. As a result of this culling process, the remaining individual sparse pixels are difficult to see on some of the larger images. Therefore, for display purposes only, the color-coded pixels in the above images have been effectively “dilated” just slightly so that they stand out better. It’s purely a cosmetic operation for the sake of the narrative; although there are comments mentioning this dilation in my code, rest assured that it has nothing to do with any calculations that actually matter.

Once the clusters are identified and labeled, the third and final step is easy: I simply take the largest cluster in each image (in this case, I chose to measure “size” in terms of the total number of member pixels, although one could have just as easily instead used some type of metric that gauges physical extent) and compute the convex hull for that cluster. The convex hull then becomes the tree border. The six convex hulls computed via this method are shown below in red:

Christmas trees with their calculated borders

The source code is written for Python 2.7.6 and it depends on numpy, scipy, matplotlib and scikit-learn. I’ve divided it into two parts. The first part is responsible for the actual image processing:

from PIL import Image
import numpy as np
import scipy as sp
import matplotlib.colors as colors
from sklearn.cluster import DBSCAN
from math import ceil, sqrt

"""
Inputs:

    rgbimg:         [M,N,3] numpy array containing (uint, 0-255) color image

    hueleftthr:     Scalar constant to select maximum allowed hue in the
                    yellow-green region

    huerightthr:    Scalar constant to select minimum allowed hue in the
                    blue-purple region

    satthr:         Scalar constant to select minimum allowed saturation

    valthr:         Scalar constant to select minimum allowed value

    monothr:        Scalar constant to select minimum allowed monochrome
                    brightness

    maxpoints:      Scalar constant maximum number of pixels to forward to
                    the DBSCAN clustering algorithm

    proxthresh:     Proximity threshold to use for DBSCAN, as a fraction of
                    the diagonal size of the image

Outputs:

    borderseg:      [K,2,2] Nested list containing K pairs of x- and y- pixel
                    values for drawing the tree border

    X:              [P,2] List of pixels that passed the threshold step

    labels:         [Q,2] List of cluster labels for points in Xslice (see
                    below)

    Xslice:         [Q,2] Reduced list of pixels to be passed to DBSCAN

"""

def findtree(rgbimg, hueleftthr=0.2, huerightthr=0.95, satthr=0.7, 
             valthr=0.7, monothr=220, maxpoints=5000, proxthresh=0.04):

    # Convert rgb image to monochrome for
    gryimg = np.asarray(Image.fromarray(rgbimg).convert('L'))
    # Convert rgb image (uint, 0-255) to hsv (float, 0.0-1.0)
    hsvimg = colors.rgb_to_hsv(rgbimg.astype(float)/255)

    # Initialize binary thresholded image
    binimg = np.zeros((rgbimg.shape[0], rgbimg.shape[1]))
    # Find pixels with hue<0.2 or hue>0.95 (red or yellow) and saturation/value
    # both greater than 0.7 (saturated and bright)--tends to coincide with
    # ornamental lights on trees in some of the images
    boolidx = np.logical_and(
                np.logical_and(
                  np.logical_or((hsvimg[:,:,0] < hueleftthr),
                                (hsvimg[:,:,0] > huerightthr)),
                                (hsvimg[:,:,1] > satthr)),
                                (hsvimg[:,:,2] > valthr))
    # Find pixels that meet hsv criterion
    binimg[np.where(boolidx)] = 255
    # Add pixels that meet grayscale brightness criterion
    binimg[np.where(gryimg > monothr)] = 255

    # Prepare thresholded points for DBSCAN clustering algorithm
    X = np.transpose(np.where(binimg == 255))
    Xslice = X
    nsample = len(Xslice)
    if nsample > maxpoints:
        # Make sure number of points does not exceed DBSCAN maximum capacity
        Xslice = X[range(0,nsample,int(ceil(float(nsample)/maxpoints)))]

    # Translate DBSCAN proximity threshold to units of pixels and run DBSCAN
    pixproxthr = proxthresh * sqrt(binimg.shape[0]**2 + binimg.shape[1]**2)
    db = DBSCAN(eps=pixproxthr, min_samples=10).fit(Xslice)
    labels = db.labels_.astype(int)

    # Find the largest cluster (i.e., with most points) and obtain convex hull   
    unique_labels = set(labels)
    maxclustpt = 0
    for k in unique_labels:
        class_members = [index[0] for index in np.argwhere(labels == k)]
        if len(class_members) > maxclustpt:
            points = Xslice[class_members]
            hull = sp.spatial.ConvexHull(points)
            maxclustpt = len(class_members)
            borderseg = [[points[simplex,0], points[simplex,1]] for simplex
                          in hull.simplices]

    return borderseg, X, labels, Xslice

and the second part is a user-level script which calls the first file and generates all of the plots above:

#!/usr/bin/env python

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from findtree import findtree

# Image files to process
fname = ['nmzwj.png', 'aVZhC.png', '2K9EF.png',
         'YowlH.png', '2y4o5.png', 'FWhSP.png']

# Initialize figures
fgsz = (16,7)        
figthresh = plt.figure(figsize=fgsz, facecolor='w')
figclust  = plt.figure(figsize=fgsz, facecolor='w')
figcltwo  = plt.figure(figsize=fgsz, facecolor='w')
figborder = plt.figure(figsize=fgsz, facecolor='w')
figthresh.canvas.set_window_title('Thresholded HSV and Monochrome Brightness')
figclust.canvas.set_window_title('DBSCAN Clusters (Raw Pixel Output)')
figcltwo.canvas.set_window_title('DBSCAN Clusters (Slightly Dilated for Display)')
figborder.canvas.set_window_title('Trees with Borders')

for ii, name in zip(range(len(fname)), fname):
    # Open the file and convert to rgb image
    rgbimg = np.asarray(Image.open(name))

    # Get the tree borders as well as a bunch of other intermediate values
    # that will be used to illustrate how the algorithm works
    borderseg, X, labels, Xslice = findtree(rgbimg)

    # Display thresholded images
    axthresh = figthresh.add_subplot(2,3,ii+1)
    axthresh.set_xticks([])
    axthresh.set_yticks([])
    binimg = np.zeros((rgbimg.shape[0], rgbimg.shape[1]))
    for v, h in X:
        binimg[v,h] = 255
    axthresh.imshow(binimg, interpolation='nearest', cmap='Greys')

    # Display color-coded clusters
    axclust = figclust.add_subplot(2,3,ii+1) # Raw version
    axclust.set_xticks([])
    axclust.set_yticks([])
    axcltwo = figcltwo.add_subplot(2,3,ii+1) # Dilated slightly for display only
    axcltwo.set_xticks([])
    axcltwo.set_yticks([])
    axcltwo.imshow(binimg, interpolation='nearest', cmap='Greys')
    clustimg = np.ones(rgbimg.shape)    
    unique_labels = set(labels)
    # Generate a unique color for each cluster 
    plcol = cm.rainbow_r(np.linspace(0, 1, len(unique_labels)))
    for lbl, pix in zip(labels, Xslice):
        for col, unqlbl in zip(plcol, unique_labels):
            if lbl == unqlbl:
                # Cluster label of -1 indicates no cluster membership;
                # override default color with black
                if lbl == -1:
                    col = [0.0, 0.0, 0.0, 1.0]
                # Raw version
                for ij in range(3):
                    clustimg[pix[0],pix[1],ij] = col[ij]
                # Dilated just for display
                axcltwo.plot(pix[1], pix[0], 'o', markerfacecolor=col, 
                    markersize=1, markeredgecolor=col)
    axclust.imshow(clustimg)
    axcltwo.set_xlim(0, binimg.shape[1]-1)
    axcltwo.set_ylim(binimg.shape[0], -1)

    # Plot original images with read borders around the trees
    axborder = figborder.add_subplot(2,3,ii+1)
    axborder.set_axis_off()
    axborder.imshow(rgbimg, interpolation='nearest')
    for vseg, hseg in borderseg:
        axborder.plot(hseg, vseg, 'r-', lw=3)
    axborder.set_xlim(0, binimg.shape[1]-1)
    axborder.set_ylim(binimg.shape[0], -1)

plt.show()

回答 1

编辑注释:我编辑了这篇文章,以(i)根据要求单独处理每棵树图像,(ii)考虑对象的亮度和形状,以提高结果的质量。


下面介绍一种考虑物体亮度和形状的方法。换句话说,它寻找具有三角形形状且具有明显亮度的物体。它使用Marvin图像处理框架以Java实现。

第一步是颜色阈值。此处的目的是将分析重点放在亮度很高的物体上。

输出图像:

源代码:

public class ChristmasTree {

private MarvinImagePlugin fill = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.fill.boundaryFill");
private MarvinImagePlugin threshold = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.color.thresholding");
private MarvinImagePlugin invert = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.color.invert");
private MarvinImagePlugin dilation = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.morphological.dilation");

public ChristmasTree(){
    MarvinImage tree;

    // Iterate each image
    for(int i=1; i<=6; i++){
        tree = MarvinImageIO.loadImage("./res/trees/tree"+i+".png");

        // 1. Threshold
        threshold.setAttribute("threshold", 200);
        threshold.process(tree.clone(), tree);
    }
}
public static void main(String[] args) {
    new ChristmasTree();
}
}

在第二步中,将图像中最亮的点放大以形成形状。该过程的结果是具有明显亮度的物体的可能形状。应用洪水填充分割,可以检测到断开的形状。

输出图像:

源代码:

public class ChristmasTree {

private MarvinImagePlugin fill = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.fill.boundaryFill");
private MarvinImagePlugin threshold = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.color.thresholding");
private MarvinImagePlugin invert = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.color.invert");
private MarvinImagePlugin dilation = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.morphological.dilation");

public ChristmasTree(){
    MarvinImage tree;

    // Iterate each image
    for(int i=1; i<=6; i++){
        tree = MarvinImageIO.loadImage("./res/trees/tree"+i+".png");

        // 1. Threshold
        threshold.setAttribute("threshold", 200);
        threshold.process(tree.clone(), tree);

        // 2. Dilate
        invert.process(tree.clone(), tree);
        tree = MarvinColorModelConverter.rgbToBinary(tree, 127);
        MarvinImageIO.saveImage(tree, "./res/trees/new/tree_"+i+"threshold.png");
        dilation.setAttribute("matrix", MarvinMath.getTrueMatrix(50, 50));
        dilation.process(tree.clone(), tree);
        MarvinImageIO.saveImage(tree, "./res/trees/new/tree_"+1+"_dilation.png");
        tree = MarvinColorModelConverter.binaryToRgb(tree);

        // 3. Segment shapes
        MarvinImage trees2 = tree.clone();
        fill(tree, trees2);
        MarvinImageIO.saveImage(trees2, "./res/trees/new/tree_"+i+"_fill.png");
}

private void fill(MarvinImage imageIn, MarvinImage imageOut){
    boolean found;
    int color= 0xFFFF0000;

    while(true){
        found=false;

        Outerloop:
        for(int y=0; y<imageIn.getHeight(); y++){
            for(int x=0; x<imageIn.getWidth(); x++){
                if(imageOut.getIntComponent0(x, y) == 0){
                    fill.setAttribute("x", x);
                    fill.setAttribute("y", y);
                    fill.setAttribute("color", color);
                    fill.setAttribute("threshold", 120);
                    fill.process(imageIn, imageOut);
                    color = newColor(color);

                    found = true;
                    break Outerloop;
                }
            }
        }

        if(!found){
            break;
        }
    }

}

private int newColor(int color){
    int red = (color & 0x00FF0000) >> 16;
    int green = (color & 0x0000FF00) >> 8;
    int blue = (color & 0x000000FF);

    if(red <= green && red <= blue){
        red+=5;
    }
    else if(green <= red && green <= blue){
        green+=5;
    }
    else{
        blue+=5;
    }

    return 0xFF000000 + (red << 16) + (green << 8) + blue;
}

public static void main(String[] args) {
    new ChristmasTree();
}
}

如输出图像所示,检测到多种形状。在此问题中,图像中只有几个亮点。但是,实施此方法是为了处理更复杂的情况。

在下一步中,将分析每个形状。一种简单的算法可以检测形状类似于三角形的形状。该算法逐行分析对象形状。如果每个形状线的质心几乎相同(给定阈值),并且质量随着y的增加而增加,则对象具有三角形的形状。形状线的质量是该线中属于该形状的像素数。想象一下,您将对象水平切片并分析每个水平段。如果它们彼此居中,并且长度以线性模式从第一段到最后一段增加,则您可能有一个类似于三角形的对象。

源代码:

private int[] detectTrees(MarvinImage image){
    HashSet<Integer> analysed = new HashSet<Integer>();
    boolean found;
    while(true){
        found = false;
        for(int y=0; y<image.getHeight(); y++){
            for(int x=0; x<image.getWidth(); x++){
                int color = image.getIntColor(x, y);

                if(!analysed.contains(color)){
                    if(isTree(image, color)){
                        return getObjectRect(image, color);
                    }

                    analysed.add(color);
                    found=true;
                }
            }
        }

        if(!found){
            break;
        }
    }
    return null;
}

private boolean isTree(MarvinImage image, int color){

    int mass[][] = new int[image.getHeight()][2];
    int yStart=-1;
    int xStart=-1;
    for(int y=0; y<image.getHeight(); y++){
        int mc = 0;
        int xs=-1;
        int xe=-1;
        for(int x=0; x<image.getWidth(); x++){
            if(image.getIntColor(x, y) == color){
                mc++;

                if(yStart == -1){
                    yStart=y;
                    xStart=x;
                }

                if(xs == -1){
                    xs = x;
                }
                if(x > xe){
                    xe = x;
                }
            }
        }
        mass[y][0] = xs;
        mass[y][3] = xe;
        mass[y][4] = mc;    
    }

    int validLines=0;
    for(int y=0; y<image.getHeight(); y++){
        if
        ( 
            mass[y][5] > 0 &&
            Math.abs(((mass[y][0]+mass[y][6])/2)-xStart) <= 50 &&
            mass[y][7] >= (mass[yStart][8] + (y-yStart)*0.3) &&
            mass[y][9] <= (mass[yStart][10] + (y-yStart)*1.5)
        )
        {
            validLines++;
        }
    }

    if(validLines > 100){
        return true;
    }
    return false;
}

最后,如下图所示,原始图像中突出显示了每个形状类似于三角形且具有明显亮度的位置(在本例中为圣诞树)。

最终输出图像:

最终源代码:

public class ChristmasTree {

private MarvinImagePlugin fill = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.fill.boundaryFill");
private MarvinImagePlugin threshold = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.color.thresholding");
private MarvinImagePlugin invert = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.color.invert");
private MarvinImagePlugin dilation = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.morphological.dilation");

public ChristmasTree(){
    MarvinImage tree;

    // Iterate each image
    for(int i=1; i<=6; i++){
        tree = MarvinImageIO.loadImage("./res/trees/tree"+i+".png");

        // 1. Threshold
        threshold.setAttribute("threshold", 200);
        threshold.process(tree.clone(), tree);

        // 2. Dilate
        invert.process(tree.clone(), tree);
        tree = MarvinColorModelConverter.rgbToBinary(tree, 127);
        MarvinImageIO.saveImage(tree, "./res/trees/new/tree_"+i+"threshold.png");
        dilation.setAttribute("matrix", MarvinMath.getTrueMatrix(50, 50));
        dilation.process(tree.clone(), tree);
        MarvinImageIO.saveImage(tree, "./res/trees/new/tree_"+1+"_dilation.png");
        tree = MarvinColorModelConverter.binaryToRgb(tree);

        // 3. Segment shapes
        MarvinImage trees2 = tree.clone();
        fill(tree, trees2);
        MarvinImageIO.saveImage(trees2, "./res/trees/new/tree_"+i+"_fill.png");

        // 4. Detect tree-like shapes
        int[] rect = detectTrees(trees2);

        // 5. Draw the result
        MarvinImage original = MarvinImageIO.loadImage("./res/trees/tree"+i+".png");
        drawBoundary(trees2, original, rect);
        MarvinImageIO.saveImage(original, "./res/trees/new/tree_"+i+"_out_2.jpg");
    }
}

private void drawBoundary(MarvinImage shape, MarvinImage original, int[] rect){
    int yLines[] = new int[6];
    yLines[0] = rect[1];
    yLines[1] = rect[1]+(int)((rect[3]/5));
    yLines[2] = rect[1]+((rect[3]/5)*2);
    yLines[3] = rect[1]+((rect[3]/5)*3);
    yLines[4] = rect[1]+(int)((rect[3]/5)*4);
    yLines[5] = rect[1]+rect[3];

    List<Point> points = new ArrayList<Point>();
    for(int i=0; i<yLines.length; i++){
        boolean in=false;
        Point startPoint=null;
        Point endPoint=null;
        for(int x=rect[0]; x<rect[0]+rect[2]; x++){

            if(shape.getIntColor(x, yLines[i]) != 0xFFFFFFFF){
                if(!in){
                    if(startPoint == null){
                        startPoint = new Point(x, yLines[i]);
                    }
                }
                in = true;
            }
            else{
                if(in){
                    endPoint = new Point(x, yLines[i]);
                }
                in = false;
            }
        }

        if(endPoint == null){
            endPoint = new Point((rect[0]+rect[2])-1, yLines[i]);
        }

        points.add(startPoint);
        points.add(endPoint);
    }

    drawLine(points.get(0).x, points.get(0).y, points.get(1).x, points.get(1).y, 15, original);
    drawLine(points.get(1).x, points.get(1).y, points.get(3).x, points.get(3).y, 15, original);
    drawLine(points.get(3).x, points.get(3).y, points.get(5).x, points.get(5).y, 15, original);
    drawLine(points.get(5).x, points.get(5).y, points.get(7).x, points.get(7).y, 15, original);
    drawLine(points.get(7).x, points.get(7).y, points.get(9).x, points.get(9).y, 15, original);
    drawLine(points.get(9).x, points.get(9).y, points.get(11).x, points.get(11).y, 15, original);
    drawLine(points.get(11).x, points.get(11).y, points.get(10).x, points.get(10).y, 15, original);
    drawLine(points.get(10).x, points.get(10).y, points.get(8).x, points.get(8).y, 15, original);
    drawLine(points.get(8).x, points.get(8).y, points.get(6).x, points.get(6).y, 15, original);
    drawLine(points.get(6).x, points.get(6).y, points.get(4).x, points.get(4).y, 15, original);
    drawLine(points.get(4).x, points.get(4).y, points.get(2).x, points.get(2).y, 15, original);
    drawLine(points.get(2).x, points.get(2).y, points.get(0).x, points.get(0).y, 15, original);
}

private void drawLine(int x1, int y1, int x2, int y2, int length, MarvinImage image){
    int lx1, lx2, ly1, ly2;
    for(int i=0; i<length; i++){
        lx1 = (x1+i >= image.getWidth() ? (image.getWidth()-1)-i: x1);
        lx2 = (x2+i >= image.getWidth() ? (image.getWidth()-1)-i: x2);
        ly1 = (y1+i >= image.getHeight() ? (image.getHeight()-1)-i: y1);
        ly2 = (y2+i >= image.getHeight() ? (image.getHeight()-1)-i: y2);

        image.drawLine(lx1+i, ly1, lx2+i, ly2, Color.red);
        image.drawLine(lx1, ly1+i, lx2, ly2+i, Color.red);
    }
}

private void fillRect(MarvinImage image, int[] rect, int length){
    for(int i=0; i<length; i++){
        image.drawRect(rect[0]+i, rect[1]+i, rect[2]-(i*2), rect[3]-(i*2), Color.red);
    }
}

private void fill(MarvinImage imageIn, MarvinImage imageOut){
    boolean found;
    int color= 0xFFFF0000;

    while(true){
        found=false;

        Outerloop:
        for(int y=0; y<imageIn.getHeight(); y++){
            for(int x=0; x<imageIn.getWidth(); x++){
                if(imageOut.getIntComponent0(x, y) == 0){
                    fill.setAttribute("x", x);
                    fill.setAttribute("y", y);
                    fill.setAttribute("color", color);
                    fill.setAttribute("threshold", 120);
                    fill.process(imageIn, imageOut);
                    color = newColor(color);

                    found = true;
                    break Outerloop;
                }
            }
        }

        if(!found){
            break;
        }
    }

}

private int[] detectTrees(MarvinImage image){
    HashSet<Integer> analysed = new HashSet<Integer>();
    boolean found;
    while(true){
        found = false;
        for(int y=0; y<image.getHeight(); y++){
            for(int x=0; x<image.getWidth(); x++){
                int color = image.getIntColor(x, y);

                if(!analysed.contains(color)){
                    if(isTree(image, color)){
                        return getObjectRect(image, color);
                    }

                    analysed.add(color);
                    found=true;
                }
            }
        }

        if(!found){
            break;
        }
    }
    return null;
}

private boolean isTree(MarvinImage image, int color){

    int mass[][] = new int[image.getHeight()][11];
    int yStart=-1;
    int xStart=-1;
    for(int y=0; y<image.getHeight(); y++){
        int mc = 0;
        int xs=-1;
        int xe=-1;
        for(int x=0; x<image.getWidth(); x++){
            if(image.getIntColor(x, y) == color){
                mc++;

                if(yStart == -1){
                    yStart=y;
                    xStart=x;
                }

                if(xs == -1){
                    xs = x;
                }
                if(x > xe){
                    xe = x;
                }
            }
        }
        mass[y][0] = xs;
        mass[y][12] = xe;
        mass[y][13] = mc;   
    }

    int validLines=0;
    for(int y=0; y<image.getHeight(); y++){
        if
        ( 
            mass[y][14] > 0 &&
            Math.abs(((mass[y][0]+mass[y][15])/2)-xStart) <= 50 &&
            mass[y][16] >= (mass[yStart][17] + (y-yStart)*0.3) &&
            mass[y][18] <= (mass[yStart][19] + (y-yStart)*1.5)
        )
        {
            validLines++;
        }
    }

    if(validLines > 100){
        return true;
    }
    return false;
}

private int[] getObjectRect(MarvinImage image, int color){
    int x1=-1;
    int x2=-1;
    int y1=-1;
    int y2=-1;

    for(int y=0; y<image.getHeight(); y++){
        for(int x=0; x<image.getWidth(); x++){
            if(image.getIntColor(x, y) == color){

                if(x1 == -1 || x < x1){
                    x1 = x;
                }
                if(x2 == -1 || x > x2){
                    x2 = x;
                }
                if(y1 == -1 || y < y1){
                    y1 = y;
                }
                if(y2 == -1 || y > y2){
                    y2 = y;
                }
            }
        }
    }

    return new int[]{x1, y1, (x2-x1), (y2-y1)};
}

private int newColor(int color){
    int red = (color & 0x00FF0000) >> 16;
    int green = (color & 0x0000FF00) >> 8;
    int blue = (color & 0x000000FF);

    if(red <= green && red <= blue){
        red+=5;
    }
    else if(green <= red && green <= blue){
        green+=30;
    }
    else{
        blue+=30;
    }

    return 0xFF000000 + (red << 16) + (green << 8) + blue;
}

public static void main(String[] args) {
    new ChristmasTree();
}
}

这种方法的优点在于,由于它可以分析物体的形状,因此可能会与包含其他发光物体的图像一起使用。

圣诞节快乐!


编辑注2

讨论了此解决方案与其他解决方案的输出图像的相似性。实际上,它们非常相似。但是这种方法不仅可以分割对象。它还从某种意义上分析了对象的形状。它可以处理同一场景中的多个发光物体。实际上,圣诞树不必是最亮的圣诞树。我只是为了中止讨论而中止。样本中存在偏差,即仅寻找最亮的对象,便会找到树木。但是,我们真的要在这一点上停止讨论吗?在这一点上,计算机实际上能识别出类似于圣诞树的物体吗?让我们尝试缩小这一差距。

下面给出的结果只是为了阐明这一点:

输入图像

在此处输入图片说明

输出

在此处输入图片说明

EDIT NOTE: I edited this post to (i) process each tree image individually, as requested in the requirements, (ii) to consider both object brightness and shape in order to improve the quality of the result.


Below is presented an approach that takes in consideration the object brightness and shape. In other words, it seeks for objects with triangle-like shape and with significant brightness. It was implemented in Java, using Marvin image processing framework.

The first step is the color thresholding. The objective here is to focus the analysis on objects with significant brightness.

output images:

source code:

public class ChristmasTree {

private MarvinImagePlugin fill = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.fill.boundaryFill");
private MarvinImagePlugin threshold = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.color.thresholding");
private MarvinImagePlugin invert = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.color.invert");
private MarvinImagePlugin dilation = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.morphological.dilation");

public ChristmasTree(){
    MarvinImage tree;

    // Iterate each image
    for(int i=1; i<=6; i++){
        tree = MarvinImageIO.loadImage("./res/trees/tree"+i+".png");

        // 1. Threshold
        threshold.setAttribute("threshold", 200);
        threshold.process(tree.clone(), tree);
    }
}
public static void main(String[] args) {
    new ChristmasTree();
}
}

In the second step, the brightest points in the image are dilated in order to form shapes. The result of this process is the probable shape of the objects with significant brightness. Applying flood fill segmentation, disconnected shapes are detected.

output images:

source code:

public class ChristmasTree {

private MarvinImagePlugin fill = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.fill.boundaryFill");
private MarvinImagePlugin threshold = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.color.thresholding");
private MarvinImagePlugin invert = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.color.invert");
private MarvinImagePlugin dilation = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.morphological.dilation");

public ChristmasTree(){
    MarvinImage tree;

    // Iterate each image
    for(int i=1; i<=6; i++){
        tree = MarvinImageIO.loadImage("./res/trees/tree"+i+".png");

        // 1. Threshold
        threshold.setAttribute("threshold", 200);
        threshold.process(tree.clone(), tree);

        // 2. Dilate
        invert.process(tree.clone(), tree);
        tree = MarvinColorModelConverter.rgbToBinary(tree, 127);
        MarvinImageIO.saveImage(tree, "./res/trees/new/tree_"+i+"threshold.png");
        dilation.setAttribute("matrix", MarvinMath.getTrueMatrix(50, 50));
        dilation.process(tree.clone(), tree);
        MarvinImageIO.saveImage(tree, "./res/trees/new/tree_"+1+"_dilation.png");
        tree = MarvinColorModelConverter.binaryToRgb(tree);

        // 3. Segment shapes
        MarvinImage trees2 = tree.clone();
        fill(tree, trees2);
        MarvinImageIO.saveImage(trees2, "./res/trees/new/tree_"+i+"_fill.png");
}

private void fill(MarvinImage imageIn, MarvinImage imageOut){
    boolean found;
    int color= 0xFFFF0000;

    while(true){
        found=false;

        Outerloop:
        for(int y=0; y<imageIn.getHeight(); y++){
            for(int x=0; x<imageIn.getWidth(); x++){
                if(imageOut.getIntComponent0(x, y) == 0){
                    fill.setAttribute("x", x);
                    fill.setAttribute("y", y);
                    fill.setAttribute("color", color);
                    fill.setAttribute("threshold", 120);
                    fill.process(imageIn, imageOut);
                    color = newColor(color);

                    found = true;
                    break Outerloop;
                }
            }
        }

        if(!found){
            break;
        }
    }

}

private int newColor(int color){
    int red = (color & 0x00FF0000) >> 16;
    int green = (color & 0x0000FF00) >> 8;
    int blue = (color & 0x000000FF);

    if(red <= green && red <= blue){
        red+=5;
    }
    else if(green <= red && green <= blue){
        green+=5;
    }
    else{
        blue+=5;
    }

    return 0xFF000000 + (red << 16) + (green << 8) + blue;
}

public static void main(String[] args) {
    new ChristmasTree();
}
}

As shown in the output image, multiple shapes was detected. In this problem, there a just a few bright points in the images. However, this approach was implemented to deal with more complex scenarios.

In the next step each shape is analyzed. A simple algorithm detects shapes with a pattern similar to a triangle. The algorithm analyze the object shape line by line. If the center of the mass of each shape line is almost the same (given a threshold) and mass increase as y increase, the object has a triangle-like shape. The mass of the shape line is the number of pixels in that line that belongs to the shape. Imagine you slice the object horizontally and analyze each horizontal segment. If they are centralized to each other and the length increase from the first segment to last one in a linear pattern, you probably has an object that resembles a triangle.

source code:

private int[] detectTrees(MarvinImage image){
    HashSet<Integer> analysed = new HashSet<Integer>();
    boolean found;
    while(true){
        found = false;
        for(int y=0; y<image.getHeight(); y++){
            for(int x=0; x<image.getWidth(); x++){
                int color = image.getIntColor(x, y);

                if(!analysed.contains(color)){
                    if(isTree(image, color)){
                        return getObjectRect(image, color);
                    }

                    analysed.add(color);
                    found=true;
                }
            }
        }

        if(!found){
            break;
        }
    }
    return null;
}

private boolean isTree(MarvinImage image, int color){

    int mass[][] = new int[image.getHeight()][2];
    int yStart=-1;
    int xStart=-1;
    for(int y=0; y<image.getHeight(); y++){
        int mc = 0;
        int xs=-1;
        int xe=-1;
        for(int x=0; x<image.getWidth(); x++){
            if(image.getIntColor(x, y) == color){
                mc++;

                if(yStart == -1){
                    yStart=y;
                    xStart=x;
                }

                if(xs == -1){
                    xs = x;
                }
                if(x > xe){
                    xe = x;
                }
            }
        }
        mass[y][0] = xs;
        mass[y][3] = xe;
        mass[y][4] = mc;    
    }

    int validLines=0;
    for(int y=0; y<image.getHeight(); y++){
        if
        ( 
            mass[y][5] > 0 &&
            Math.abs(((mass[y][0]+mass[y][6])/2)-xStart) <= 50 &&
            mass[y][7] >= (mass[yStart][8] + (y-yStart)*0.3) &&
            mass[y][9] <= (mass[yStart][10] + (y-yStart)*1.5)
        )
        {
            validLines++;
        }
    }

    if(validLines > 100){
        return true;
    }
    return false;
}

Finally, the position of each shape similar to a triangle and with significant brightness, in this case a Christmas tree, is highlighted in the original image, as shown below.

final output images:

final source code:

public class ChristmasTree {

private MarvinImagePlugin fill = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.fill.boundaryFill");
private MarvinImagePlugin threshold = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.color.thresholding");
private MarvinImagePlugin invert = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.color.invert");
private MarvinImagePlugin dilation = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.morphological.dilation");

public ChristmasTree(){
    MarvinImage tree;

    // Iterate each image
    for(int i=1; i<=6; i++){
        tree = MarvinImageIO.loadImage("./res/trees/tree"+i+".png");

        // 1. Threshold
        threshold.setAttribute("threshold", 200);
        threshold.process(tree.clone(), tree);

        // 2. Dilate
        invert.process(tree.clone(), tree);
        tree = MarvinColorModelConverter.rgbToBinary(tree, 127);
        MarvinImageIO.saveImage(tree, "./res/trees/new/tree_"+i+"threshold.png");
        dilation.setAttribute("matrix", MarvinMath.getTrueMatrix(50, 50));
        dilation.process(tree.clone(), tree);
        MarvinImageIO.saveImage(tree, "./res/trees/new/tree_"+1+"_dilation.png");
        tree = MarvinColorModelConverter.binaryToRgb(tree);

        // 3. Segment shapes
        MarvinImage trees2 = tree.clone();
        fill(tree, trees2);
        MarvinImageIO.saveImage(trees2, "./res/trees/new/tree_"+i+"_fill.png");

        // 4. Detect tree-like shapes
        int[] rect = detectTrees(trees2);

        // 5. Draw the result
        MarvinImage original = MarvinImageIO.loadImage("./res/trees/tree"+i+".png");
        drawBoundary(trees2, original, rect);
        MarvinImageIO.saveImage(original, "./res/trees/new/tree_"+i+"_out_2.jpg");
    }
}

private void drawBoundary(MarvinImage shape, MarvinImage original, int[] rect){
    int yLines[] = new int[6];
    yLines[0] = rect[1];
    yLines[1] = rect[1]+(int)((rect[3]/5));
    yLines[2] = rect[1]+((rect[3]/5)*2);
    yLines[3] = rect[1]+((rect[3]/5)*3);
    yLines[4] = rect[1]+(int)((rect[3]/5)*4);
    yLines[5] = rect[1]+rect[3];

    List<Point> points = new ArrayList<Point>();
    for(int i=0; i<yLines.length; i++){
        boolean in=false;
        Point startPoint=null;
        Point endPoint=null;
        for(int x=rect[0]; x<rect[0]+rect[2]; x++){

            if(shape.getIntColor(x, yLines[i]) != 0xFFFFFFFF){
                if(!in){
                    if(startPoint == null){
                        startPoint = new Point(x, yLines[i]);
                    }
                }
                in = true;
            }
            else{
                if(in){
                    endPoint = new Point(x, yLines[i]);
                }
                in = false;
            }
        }

        if(endPoint == null){
            endPoint = new Point((rect[0]+rect[2])-1, yLines[i]);
        }

        points.add(startPoint);
        points.add(endPoint);
    }

    drawLine(points.get(0).x, points.get(0).y, points.get(1).x, points.get(1).y, 15, original);
    drawLine(points.get(1).x, points.get(1).y, points.get(3).x, points.get(3).y, 15, original);
    drawLine(points.get(3).x, points.get(3).y, points.get(5).x, points.get(5).y, 15, original);
    drawLine(points.get(5).x, points.get(5).y, points.get(7).x, points.get(7).y, 15, original);
    drawLine(points.get(7).x, points.get(7).y, points.get(9).x, points.get(9).y, 15, original);
    drawLine(points.get(9).x, points.get(9).y, points.get(11).x, points.get(11).y, 15, original);
    drawLine(points.get(11).x, points.get(11).y, points.get(10).x, points.get(10).y, 15, original);
    drawLine(points.get(10).x, points.get(10).y, points.get(8).x, points.get(8).y, 15, original);
    drawLine(points.get(8).x, points.get(8).y, points.get(6).x, points.get(6).y, 15, original);
    drawLine(points.get(6).x, points.get(6).y, points.get(4).x, points.get(4).y, 15, original);
    drawLine(points.get(4).x, points.get(4).y, points.get(2).x, points.get(2).y, 15, original);
    drawLine(points.get(2).x, points.get(2).y, points.get(0).x, points.get(0).y, 15, original);
}

private void drawLine(int x1, int y1, int x2, int y2, int length, MarvinImage image){
    int lx1, lx2, ly1, ly2;
    for(int i=0; i<length; i++){
        lx1 = (x1+i >= image.getWidth() ? (image.getWidth()-1)-i: x1);
        lx2 = (x2+i >= image.getWidth() ? (image.getWidth()-1)-i: x2);
        ly1 = (y1+i >= image.getHeight() ? (image.getHeight()-1)-i: y1);
        ly2 = (y2+i >= image.getHeight() ? (image.getHeight()-1)-i: y2);

        image.drawLine(lx1+i, ly1, lx2+i, ly2, Color.red);
        image.drawLine(lx1, ly1+i, lx2, ly2+i, Color.red);
    }
}

private void fillRect(MarvinImage image, int[] rect, int length){
    for(int i=0; i<length; i++){
        image.drawRect(rect[0]+i, rect[1]+i, rect[2]-(i*2), rect[3]-(i*2), Color.red);
    }
}

private void fill(MarvinImage imageIn, MarvinImage imageOut){
    boolean found;
    int color= 0xFFFF0000;

    while(true){
        found=false;

        Outerloop:
        for(int y=0; y<imageIn.getHeight(); y++){
            for(int x=0; x<imageIn.getWidth(); x++){
                if(imageOut.getIntComponent0(x, y) == 0){
                    fill.setAttribute("x", x);
                    fill.setAttribute("y", y);
                    fill.setAttribute("color", color);
                    fill.setAttribute("threshold", 120);
                    fill.process(imageIn, imageOut);
                    color = newColor(color);

                    found = true;
                    break Outerloop;
                }
            }
        }

        if(!found){
            break;
        }
    }

}

private int[] detectTrees(MarvinImage image){
    HashSet<Integer> analysed = new HashSet<Integer>();
    boolean found;
    while(true){
        found = false;
        for(int y=0; y<image.getHeight(); y++){
            for(int x=0; x<image.getWidth(); x++){
                int color = image.getIntColor(x, y);

                if(!analysed.contains(color)){
                    if(isTree(image, color)){
                        return getObjectRect(image, color);
                    }

                    analysed.add(color);
                    found=true;
                }
            }
        }

        if(!found){
            break;
        }
    }
    return null;
}

private boolean isTree(MarvinImage image, int color){

    int mass[][] = new int[image.getHeight()][11];
    int yStart=-1;
    int xStart=-1;
    for(int y=0; y<image.getHeight(); y++){
        int mc = 0;
        int xs=-1;
        int xe=-1;
        for(int x=0; x<image.getWidth(); x++){
            if(image.getIntColor(x, y) == color){
                mc++;

                if(yStart == -1){
                    yStart=y;
                    xStart=x;
                }

                if(xs == -1){
                    xs = x;
                }
                if(x > xe){
                    xe = x;
                }
            }
        }
        mass[y][0] = xs;
        mass[y][12] = xe;
        mass[y][13] = mc;   
    }

    int validLines=0;
    for(int y=0; y<image.getHeight(); y++){
        if
        ( 
            mass[y][14] > 0 &&
            Math.abs(((mass[y][0]+mass[y][15])/2)-xStart) <= 50 &&
            mass[y][16] >= (mass[yStart][17] + (y-yStart)*0.3) &&
            mass[y][18] <= (mass[yStart][19] + (y-yStart)*1.5)
        )
        {
            validLines++;
        }
    }

    if(validLines > 100){
        return true;
    }
    return false;
}

private int[] getObjectRect(MarvinImage image, int color){
    int x1=-1;
    int x2=-1;
    int y1=-1;
    int y2=-1;

    for(int y=0; y<image.getHeight(); y++){
        for(int x=0; x<image.getWidth(); x++){
            if(image.getIntColor(x, y) == color){

                if(x1 == -1 || x < x1){
                    x1 = x;
                }
                if(x2 == -1 || x > x2){
                    x2 = x;
                }
                if(y1 == -1 || y < y1){
                    y1 = y;
                }
                if(y2 == -1 || y > y2){
                    y2 = y;
                }
            }
        }
    }

    return new int[]{x1, y1, (x2-x1), (y2-y1)};
}

private int newColor(int color){
    int red = (color & 0x00FF0000) >> 16;
    int green = (color & 0x0000FF00) >> 8;
    int blue = (color & 0x000000FF);

    if(red <= green && red <= blue){
        red+=5;
    }
    else if(green <= red && green <= blue){
        green+=30;
    }
    else{
        blue+=30;
    }

    return 0xFF000000 + (red << 16) + (green << 8) + blue;
}

public static void main(String[] args) {
    new ChristmasTree();
}
}

The advantage of this approach is the fact it will probably work with images containing other luminous objects since it analyzes the object shape.

Merry Christmas!


EDIT NOTE 2

There is a discussion about the similarity of the output images of this solution and some other ones. In fact, they are very similar. But this approach does not just segment objects. It also analyzes the object shapes in some sense. It can handle multiple luminous objects in the same scene. In fact, the Christmas tree does not need to be the brightest one. I’m just abording it to enrich the discussion. There is a bias in the samples that just looking for the brightest object, you will find the trees. But, does we really want to stop the discussion at this point? At this point, how far the computer is really recognizing an object that resembles a Christmas tree? Let’s try to close this gap.

Below is presented a result just to elucidate this point:

input image

enter image description here

output

enter image description here


回答 2

这是我简单而又愚蠢的解决方案。它基于这样的假设,即树将是图片中最亮,最大的东西。

//g++ -Wall -pedantic -ansi -O2 -pipe -s -o christmas_tree christmas_tree.cpp `pkg-config --cflags --libs opencv`
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <iostream>

using namespace cv;
using namespace std;

int main(int argc,char *argv[])
{
    Mat original,tmp,tmp1;
    vector <vector<Point> > contours;
    Moments m;
    Rect boundrect;
    Point2f center;
    double radius, max_area=0,tmp_area=0;
    unsigned int j, k;
    int i;

    for(i = 1; i < argc; ++i)
    {
        original = imread(argv[i]);
        if(original.empty())
        {
            cerr << "Error"<<endl;
            return -1;
        }

        GaussianBlur(original, tmp, Size(3, 3), 0, 0, BORDER_DEFAULT);
        erode(tmp, tmp, Mat(), Point(-1, -1), 10);
        cvtColor(tmp, tmp, CV_BGR2HSV);
        inRange(tmp, Scalar(0, 0, 0), Scalar(180, 255, 200), tmp);

        dilate(original, tmp1, Mat(), Point(-1, -1), 15);
        cvtColor(tmp1, tmp1, CV_BGR2HLS);
        inRange(tmp1, Scalar(0, 185, 0), Scalar(180, 255, 255), tmp1);
        dilate(tmp1, tmp1, Mat(), Point(-1, -1), 10);

        bitwise_and(tmp, tmp1, tmp1);

        findContours(tmp1, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
        max_area = 0;
        j = 0;
        for(k = 0; k < contours.size(); k++)
        {
            tmp_area = contourArea(contours[k]);
            if(tmp_area > max_area)
            {
                max_area = tmp_area;
                j = k;
            }
        }
        tmp1 = Mat::zeros(original.size(),CV_8U);
        approxPolyDP(contours[j], contours[j], 30, true);
        drawContours(tmp1, contours, j, Scalar(255,255,255), CV_FILLED);

        m = moments(contours[j]);
        boundrect = boundingRect(contours[j]);
        center = Point2f(m.m10/m.m00, m.m01/m.m00);
        radius = (center.y - (boundrect.tl().y))/4.0*3.0;
        Rect heightrect(center.x-original.cols/5, boundrect.tl().y, original.cols/5*2, boundrect.size().height);

        tmp = Mat::zeros(original.size(), CV_8U);
        rectangle(tmp, heightrect, Scalar(255, 255, 255), -1);
        circle(tmp, center, radius, Scalar(255, 255, 255), -1);

        bitwise_and(tmp, tmp1, tmp1);

        findContours(tmp1, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
        max_area = 0;
        j = 0;
        for(k = 0; k < contours.size(); k++)
        {
            tmp_area = contourArea(contours[k]);
            if(tmp_area > max_area)
            {
                max_area = tmp_area;
                j = k;
            }
        }

        approxPolyDP(contours[j], contours[j], 30, true);
        convexHull(contours[j], contours[j]);

        drawContours(original, contours, j, Scalar(0, 0, 255), 3);

        namedWindow(argv[i], CV_WINDOW_NORMAL|CV_WINDOW_KEEPRATIO|CV_GUI_EXPANDED);
        imshow(argv[i], original);

        waitKey(0);
        destroyWindow(argv[i]);
    }

    return 0;
}

第一步是检测图片中最亮的像素,但是我们必须对树木本身和反射其光的雪进行区分。在这里,我们尝试排除对颜色代码应用非常简单的滤镜的雪:

GaussianBlur(original, tmp, Size(3, 3), 0, 0, BORDER_DEFAULT);
erode(tmp, tmp, Mat(), Point(-1, -1), 10);
cvtColor(tmp, tmp, CV_BGR2HSV);
inRange(tmp, Scalar(0, 0, 0), Scalar(180, 255, 200), tmp);

然后我们找到每个“明亮”像素:

dilate(original, tmp1, Mat(), Point(-1, -1), 15);
cvtColor(tmp1, tmp1, CV_BGR2HLS);
inRange(tmp1, Scalar(0, 185, 0), Scalar(180, 255, 255), tmp1);
dilate(tmp1, tmp1, Mat(), Point(-1, -1), 10);

最后,我们将两个结果结合起来:

bitwise_and(tmp, tmp1, tmp1);

现在我们寻找最大的明亮物体:

findContours(tmp1, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
max_area = 0;
j = 0;
for(k = 0; k < contours.size(); k++)
{
    tmp_area = contourArea(contours[k]);
    if(tmp_area > max_area)
    {
        max_area = tmp_area;
        j = k;
    }
}
tmp1 = Mat::zeros(original.size(),CV_8U);
approxPolyDP(contours[j], contours[j], 30, true);
drawContours(tmp1, contours, j, Scalar(255,255,255), CV_FILLED);

现在我们差不多完成了,但是由于下雪还有些不完善。为了将它们剪掉,我们将使用一个圆形和一个矩形构建一个遮罩,以近似于树的形状来删除不需要的片段:

m = moments(contours[j]);
boundrect = boundingRect(contours[j]);
center = Point2f(m.m10/m.m00, m.m01/m.m00);
radius = (center.y - (boundrect.tl().y))/4.0*3.0;
Rect heightrect(center.x-original.cols/5, boundrect.tl().y, original.cols/5*2, boundrect.size().height);

tmp = Mat::zeros(original.size(), CV_8U);
rectangle(tmp, heightrect, Scalar(255, 255, 255), -1);
circle(tmp, center, radius, Scalar(255, 255, 255), -1);

bitwise_and(tmp, tmp1, tmp1);

最后一步是找到我们树的轮廓并将其绘制在原始图片上。

findContours(tmp1, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
max_area = 0;
j = 0;
for(k = 0; k < contours.size(); k++)
{
    tmp_area = contourArea(contours[k]);
    if(tmp_area > max_area)
    {
        max_area = tmp_area;
        j = k;
    }
}

approxPolyDP(contours[j], contours[j], 30, true);
convexHull(contours[j], contours[j]);

drawContours(original, contours, j, Scalar(0, 0, 255), 3);

抱歉,目前连接不好,因此无法上传图片。稍后再尝试。

圣诞节快乐。

编辑:

这里是最终输出的一些图片:

Here is my simple and dumb solution. It is based upon the assumption that the tree will be the most bright and big thing in the picture.

//g++ -Wall -pedantic -ansi -O2 -pipe -s -o christmas_tree christmas_tree.cpp `pkg-config --cflags --libs opencv`
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <iostream>

using namespace cv;
using namespace std;

int main(int argc,char *argv[])
{
    Mat original,tmp,tmp1;
    vector <vector<Point> > contours;
    Moments m;
    Rect boundrect;
    Point2f center;
    double radius, max_area=0,tmp_area=0;
    unsigned int j, k;
    int i;

    for(i = 1; i < argc; ++i)
    {
        original = imread(argv[i]);
        if(original.empty())
        {
            cerr << "Error"<<endl;
            return -1;
        }

        GaussianBlur(original, tmp, Size(3, 3), 0, 0, BORDER_DEFAULT);
        erode(tmp, tmp, Mat(), Point(-1, -1), 10);
        cvtColor(tmp, tmp, CV_BGR2HSV);
        inRange(tmp, Scalar(0, 0, 0), Scalar(180, 255, 200), tmp);

        dilate(original, tmp1, Mat(), Point(-1, -1), 15);
        cvtColor(tmp1, tmp1, CV_BGR2HLS);
        inRange(tmp1, Scalar(0, 185, 0), Scalar(180, 255, 255), tmp1);
        dilate(tmp1, tmp1, Mat(), Point(-1, -1), 10);

        bitwise_and(tmp, tmp1, tmp1);

        findContours(tmp1, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
        max_area = 0;
        j = 0;
        for(k = 0; k < contours.size(); k++)
        {
            tmp_area = contourArea(contours[k]);
            if(tmp_area > max_area)
            {
                max_area = tmp_area;
                j = k;
            }
        }
        tmp1 = Mat::zeros(original.size(),CV_8U);
        approxPolyDP(contours[j], contours[j], 30, true);
        drawContours(tmp1, contours, j, Scalar(255,255,255), CV_FILLED);

        m = moments(contours[j]);
        boundrect = boundingRect(contours[j]);
        center = Point2f(m.m10/m.m00, m.m01/m.m00);
        radius = (center.y - (boundrect.tl().y))/4.0*3.0;
        Rect heightrect(center.x-original.cols/5, boundrect.tl().y, original.cols/5*2, boundrect.size().height);

        tmp = Mat::zeros(original.size(), CV_8U);
        rectangle(tmp, heightrect, Scalar(255, 255, 255), -1);
        circle(tmp, center, radius, Scalar(255, 255, 255), -1);

        bitwise_and(tmp, tmp1, tmp1);

        findContours(tmp1, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
        max_area = 0;
        j = 0;
        for(k = 0; k < contours.size(); k++)
        {
            tmp_area = contourArea(contours[k]);
            if(tmp_area > max_area)
            {
                max_area = tmp_area;
                j = k;
            }
        }

        approxPolyDP(contours[j], contours[j], 30, true);
        convexHull(contours[j], contours[j]);

        drawContours(original, contours, j, Scalar(0, 0, 255), 3);

        namedWindow(argv[i], CV_WINDOW_NORMAL|CV_WINDOW_KEEPRATIO|CV_GUI_EXPANDED);
        imshow(argv[i], original);

        waitKey(0);
        destroyWindow(argv[i]);
    }

    return 0;
}

The first step is to detect the most bright pixels in the picture, but we have to do a distinction between the tree itself and the snow which reflect its light. Here we try to exclude the snow appling a really simple filter on the color codes:

GaussianBlur(original, tmp, Size(3, 3), 0, 0, BORDER_DEFAULT);
erode(tmp, tmp, Mat(), Point(-1, -1), 10);
cvtColor(tmp, tmp, CV_BGR2HSV);
inRange(tmp, Scalar(0, 0, 0), Scalar(180, 255, 200), tmp);

Then we find every “bright” pixel:

dilate(original, tmp1, Mat(), Point(-1, -1), 15);
cvtColor(tmp1, tmp1, CV_BGR2HLS);
inRange(tmp1, Scalar(0, 185, 0), Scalar(180, 255, 255), tmp1);
dilate(tmp1, tmp1, Mat(), Point(-1, -1), 10);

Finally we join the two results:

bitwise_and(tmp, tmp1, tmp1);

Now we look for the biggest bright object:

findContours(tmp1, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
max_area = 0;
j = 0;
for(k = 0; k < contours.size(); k++)
{
    tmp_area = contourArea(contours[k]);
    if(tmp_area > max_area)
    {
        max_area = tmp_area;
        j = k;
    }
}
tmp1 = Mat::zeros(original.size(),CV_8U);
approxPolyDP(contours[j], contours[j], 30, true);
drawContours(tmp1, contours, j, Scalar(255,255,255), CV_FILLED);

Now we have almost done, but there are still some imperfection due to the snow. To cut them off we’ll build a mask using a circle and a rectangle to approximate the shape of a tree to delete unwanted pieces:

m = moments(contours[j]);
boundrect = boundingRect(contours[j]);
center = Point2f(m.m10/m.m00, m.m01/m.m00);
radius = (center.y - (boundrect.tl().y))/4.0*3.0;
Rect heightrect(center.x-original.cols/5, boundrect.tl().y, original.cols/5*2, boundrect.size().height);

tmp = Mat::zeros(original.size(), CV_8U);
rectangle(tmp, heightrect, Scalar(255, 255, 255), -1);
circle(tmp, center, radius, Scalar(255, 255, 255), -1);

bitwise_and(tmp, tmp1, tmp1);

The last step is to find the contour of our tree and draw it on the original picture.

findContours(tmp1, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
max_area = 0;
j = 0;
for(k = 0; k < contours.size(); k++)
{
    tmp_area = contourArea(contours[k]);
    if(tmp_area > max_area)
    {
        max_area = tmp_area;
        j = k;
    }
}

approxPolyDP(contours[j], contours[j], 30, true);
convexHull(contours[j], contours[j]);

drawContours(original, contours, j, Scalar(0, 0, 255), 3);

I’m sorry but at the moment I have a bad connection so it is not possible for me to upload pictures. I’ll try to do it later.

Merry Christmas.

EDIT:

Here some pictures of the final output:


回答 3

我在Matlab R2007a中编写了代码。我用k均值粗略提取了圣诞树。我将只用一张图像显示中间结果,而用全部六个图像显示最终结果。

首先,我将RGB空间映射到Lab空间,这可以增强b通道中红色的对比度:

colorTransform = makecform('srgb2lab');
I = applycform(I, colorTransform);
L = double(I(:,:,1));
a = double(I(:,:,2));
b = double(I(:,:,3));

在此处输入图片说明

除了色彩空间中的功能外,我还使用了与邻域相关的纹理功能,而不是与每个像素本身相关。在这里,我将三个原始通道(R,G,B)的强度线性组合。我采用这种格式的原因是,图片中的圣诞树上都有红色的灯光,有时还有绿色/有时是蓝色的照明。

R=double(Irgb(:,:,1));
G=double(Irgb(:,:,2));
B=double(Irgb(:,:,3));
I0 = (3*R + max(G,B)-min(G,B))/2;

在此处输入图片说明

我在其上应用了3X3局部二进制模式I0,将中心像素用作阈值,并通过计算阈值以上的平均像素强度值与阈值以下的平均值之间的差来获得对比度。

I0_copy = zeros(size(I0));
for i = 2 : size(I0,1) - 1
    for j = 2 : size(I0,2) - 1
        tmp = I0(i-1:i+1,j-1:j+1) >= I0(i,j);
        I0_copy(i,j) = mean(mean(tmp.*I0(i-1:i+1,j-1:j+1))) - ...
            mean(mean(~tmp.*I0(i-1:i+1,j-1:j+1))); % Contrast
    end
end

在此处输入图片说明

由于我总共有4个特征,因此我将在聚类方法中选择K = 5。k-means的代码如下所示(来自Andrew Ng博士的机器学习类。我之前参加过该类,我自己在程序设计中编写了代码)。

[centroids, idx] = runkMeans(X, initial_centroids, max_iters);
mask=reshape(idx,img_size(1),img_size(2));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [centroids, idx] = runkMeans(X, initial_centroids, ...
                                  max_iters, plot_progress)
   [m n] = size(X);
   K = size(initial_centroids, 1);
   centroids = initial_centroids;
   previous_centroids = centroids;
   idx = zeros(m, 1);

   for i=1:max_iters    
      % For each example in X, assign it to the closest centroid
      idx = findClosestCentroids(X, centroids);

      % Given the memberships, compute new centroids
      centroids = computeCentroids(X, idx, K);

   end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function idx = findClosestCentroids(X, centroids)
   K = size(centroids, 1);
   idx = zeros(size(X,1), 1);
   for xi = 1:size(X,1)
      x = X(xi, :);
      % Find closest centroid for x.
      best = Inf;
      for mui = 1:K
        mu = centroids(mui, :);
        d = dot(x - mu, x - mu);
        if d < best
           best = d;
           idx(xi) = mui;
        end
      end
   end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function centroids = computeCentroids(X, idx, K)
   [m n] = size(X);
   centroids = zeros(K, n);
   for mui = 1:K
      centroids(mui, :) = sum(X(idx == mui, :)) / sum(idx == mui);
   end

由于该程序在我的计算机上运行非常慢,因此我只运行了3次迭代。通常,停止条件是(i)迭代时间至少为10,或(ii)质心不再变化。以我的测试而言,增加迭代次数可能会更准确地区分背景(天空和树木,天空和建筑物等),但在圣诞树提取中并未显示出明显的变化。还要注意,k均值不能不受随机质心初始化的影响,因此建议多次运行该程序进行比较。

在k均值之后,I0选择具有最大强度的标记区域。并使用边界跟踪提取边界。对我来说,最后一棵圣诞树是最难提取的圣诞树,因为该图片中的对比度不如前五棵圣诞树高。我方法中的另一个问题是,我bwboundaries在Matlab中使用函数来跟踪边界,但是有时在第3、5、6个结果中也可以看到内部边界。圣诞树上的阴暗面不仅无法与发光面聚在一起,而且还导致了许多细微的内部边界追踪(imfill改善不多)。总之我的算法还有很大的改进空间。

一些出版物指出,均值平移可能比k均值更健壮,并且许多 基于图割的算法在复杂的边界分割上也很有竞争力。我自己编写了均值漂移算法,似乎可以在没有足够光线的情况下更好地提取区域。但是均值移动有点过分,需要一些合并策略。它在我的计算机上的运行速度甚至比k-means慢得多,恐怕我不得不放弃它。我热切期待看到其他人将通过上述现代算法在此处提交出色的结果。

但是我始终相信特征选择是图像分割中的关键组成部分。选择适当的特征以使对象和背景之间的余量最大化,许多分割算法肯定会起作用。不同的算法可能会将结果从1提高到10,但是功能选择可能会将结果从0提高到1。

圣诞节快乐 !

I wrote the code in Matlab R2007a. I used k-means to roughly extract the christmas tree. I will show my intermediate result only with one image, and final results with all the six.

First, I mapped the RGB space onto Lab space, which could enhance the contrast of red in its b channel:

colorTransform = makecform('srgb2lab');
I = applycform(I, colorTransform);
L = double(I(:,:,1));
a = double(I(:,:,2));
b = double(I(:,:,3));

enter image description here

Besides the feature in color space, I also used texture feature that is relevant with the neighborhood rather than each pixel itself. Here I linearly combined the intensity from the 3 original channels (R,G,B). The reason why I formatted this way is because the christmas trees in the picture all have red lights on them, and sometimes green/sometimes blue illumination as well.

R=double(Irgb(:,:,1));
G=double(Irgb(:,:,2));
B=double(Irgb(:,:,3));
I0 = (3*R + max(G,B)-min(G,B))/2;

enter image description here

I applied a 3X3 local binary pattern on I0, used the center pixel as the threshold, and obtained the contrast by calculating the difference between the mean pixel intensity value above the threshold and the mean value below it.

I0_copy = zeros(size(I0));
for i = 2 : size(I0,1) - 1
    for j = 2 : size(I0,2) - 1
        tmp = I0(i-1:i+1,j-1:j+1) >= I0(i,j);
        I0_copy(i,j) = mean(mean(tmp.*I0(i-1:i+1,j-1:j+1))) - ...
            mean(mean(~tmp.*I0(i-1:i+1,j-1:j+1))); % Contrast
    end
end

enter image description here

Since I have 4 features in total, I would choose K=5 in my clustering method. The code for k-means are shown below (it is from Dr. Andrew Ng’s machine learning course. I took the course before, and I wrote the code myself in his programming assignment).

[centroids, idx] = runkMeans(X, initial_centroids, max_iters);
mask=reshape(idx,img_size(1),img_size(2));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [centroids, idx] = runkMeans(X, initial_centroids, ...
                                  max_iters, plot_progress)
   [m n] = size(X);
   K = size(initial_centroids, 1);
   centroids = initial_centroids;
   previous_centroids = centroids;
   idx = zeros(m, 1);

   for i=1:max_iters    
      % For each example in X, assign it to the closest centroid
      idx = findClosestCentroids(X, centroids);

      % Given the memberships, compute new centroids
      centroids = computeCentroids(X, idx, K);

   end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function idx = findClosestCentroids(X, centroids)
   K = size(centroids, 1);
   idx = zeros(size(X,1), 1);
   for xi = 1:size(X,1)
      x = X(xi, :);
      % Find closest centroid for x.
      best = Inf;
      for mui = 1:K
        mu = centroids(mui, :);
        d = dot(x - mu, x - mu);
        if d < best
           best = d;
           idx(xi) = mui;
        end
      end
   end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function centroids = computeCentroids(X, idx, K)
   [m n] = size(X);
   centroids = zeros(K, n);
   for mui = 1:K
      centroids(mui, :) = sum(X(idx == mui, :)) / sum(idx == mui);
   end

Since the program runs very slow in my computer, I just ran 3 iterations. Normally the stop criteria is (i) iteration time at least 10, or (ii) no change on the centroids any more. To my test, increasing the iteration may differentiate the background (sky and tree, sky and building,…) more accurately, but did not show a drastic changes in christmas tree extraction. Also note k-means is not immune to the random centroid initialization, so running the program several times to make a comparison is recommended.

After the k-means, the labelled region with the maximum intensity of I0 was chosen. And boundary tracing was used to extracted the boundaries. To me, the last christmas tree is the most difficult one to extract since the contrast in that picture is not high enough as they are in the first five. Another issue in my method is that I used bwboundaries function in Matlab to trace the boundary, but sometimes the inner boundaries are also included as you can observe in 3rd, 5th, 6th results. The dark side within the christmas trees are not only failed to be clustered with the illuminated side, but they also lead to so many tiny inner boundaries tracing (imfill doesn’t improve very much). In all my algorithm still has a lot improvement space.

Some publications indicates that mean-shift may be more robust than k-means, and many graph-cut based algorithms are also very competitive on complicated boundaries segmentation. I wrote a mean-shift algorithm myself, it seems to better extract the regions without enough light. But mean-shift is a little bit over-segmented, and some strategy of merging is needed. It ran even much slower than k-means in my computer, I am afraid I have to give it up. I eagerly look forward to see others would submit excellent results here with those modern algorithms mentioned above.

Yet I always believe the feature selection is the key component in image segmentation. With a proper feature selection that can maximize the margin between object and background, many segmentation algorithms will definitely work. Different algorithms may improve the result from 1 to 10, but the feature selection may improve it from 0 to 1.

Merry Christmas !


回答 4

这是我使用传统图像处理方法的最后一篇文章。

在这里,我以某种方式结合了其他两个建议,甚至取得了更好的结果。事实上,我看不到这些结果如何更好(尤其是当您查看该方法生成的蒙版图像时)。

该方法的核心是三个关键假设的组合:

  1. 图像在树状区域中应该有很大的波动
  2. 图像在树状区域中应具有更高的强度
  3. 背景区域应具有较低的强度,并且大部分为蓝色

考虑到这些假设,该方法的工作方式如下:

  1. 将图像转换为HSV
  2. 用LoG滤波器过滤V通道
  3. 对LoG滤波图像应用硬阈值以获得“活动”蒙版A
  4. 对V通道应用硬阈值以获得强度遮罩B
  5. 应用H通道阈值以将低强度的蓝色区域捕获到背景遮罩C中
  6. 使用AND合并蒙版以获得最终蒙版
  7. 扩展遮罩以扩大区域并连接分散的像素
  8. 消除小区域并获得最终的蒙版,该蒙版最终仅代表树

这是MATLAB中的代码(同样,脚本将所有jpg图像加载到当前文件夹中,同样,这并不是一段经过优化的代码):

% clear everything
clear;
pack;
close all;
close all hidden;
drawnow;
clc;

% initialization
ims=dir('./*.jpg');
imgs={};
images={}; 
blur_images={}; 
log_image={}; 
dilated_image={};
int_image={};
back_image={};
bin_image={};
measurements={};
box={};
num=length(ims);
thres_div = 3;

for i=1:num, 
    % load original image
    imgs{end+1}=imread(ims(i).name);

    % convert to HSV colorspace
    images{end+1}=rgb2hsv(imgs{i});

    % apply laplacian filtering and heuristic hard thresholding
    val_thres = (max(max(images{i}(:,:,3)))/thres_div);
    log_image{end+1} = imfilter( images{i}(:,:,3),fspecial('log')) > val_thres;

    % get the most bright regions of the image
    int_thres = 0.26*max(max( images{i}(:,:,3)));
    int_image{end+1} = images{i}(:,:,3) > int_thres;

    % get the most probable background regions of the image
    back_image{end+1} = images{i}(:,:,1)>(150/360) & images{i}(:,:,1)<(320/360) & images{i}(:,:,3)<0.5;

    % compute the final binary image by combining 
    % high 'activity' with high intensity
    bin_image{end+1} = logical( log_image{i}) & logical( int_image{i}) & ~logical( back_image{i});

    % apply morphological dilation to connect distonnected components
    strel_size = round(0.01*max(size(imgs{i})));        % structuring element for morphological dilation
    dilated_image{end+1} = imdilate( bin_image{i}, strel('disk',strel_size));

    % do some measurements to eliminate small objects
    measurements{i} = regionprops( logical( dilated_image{i}),'Area','BoundingBox');

    % iterative enlargement of the structuring element for better connectivity
    while length(measurements{i})>14 && strel_size<(min(size(imgs{i}(:,:,1)))/2),
        strel_size = round( 1.5 * strel_size);
        dilated_image{i} = imdilate( bin_image{i}, strel('disk',strel_size));
        measurements{i} = regionprops( logical( dilated_image{i}),'Area','BoundingBox');
    end

    for m=1:length(measurements{i})
        if measurements{i}(m).Area < 0.05*numel( dilated_image{i})
            dilated_image{i}( round(measurements{i}(m).BoundingBox(2):measurements{i}(m).BoundingBox(4)+measurements{i}(m).BoundingBox(2)),...
                round(measurements{i}(m).BoundingBox(1):measurements{i}(m).BoundingBox(3)+measurements{i}(m).BoundingBox(1))) = 0;
        end
    end
    % make sure the dilated image is the same size with the original
    dilated_image{i} = dilated_image{i}(1:size(imgs{i},1),1:size(imgs{i},2));
    % compute the bounding box
    [y,x] = find( dilated_image{i});
    if isempty( y)
        box{end+1}=[];
    else
        box{end+1} = [ min(x) min(y) max(x)-min(x)+1 max(y)-min(y)+1];
    end
end 

%%% additional code to display things
for i=1:num,
    figure;
    subplot(121);
    colormap gray;
    imshow( imgs{i});
    if ~isempty(box{i})
        hold on;
        rr = rectangle( 'position', box{i});
        set( rr, 'EdgeColor', 'r');
        hold off;
    end
    subplot(122);
    imshow( imgs{i}.*uint8(repmat(dilated_image{i},[1 1 3])));
end

结果

结果

高分辨率结果仍可在这里!
在这里可以找到更多带有其他图像的实验。

This is my final post using the traditional image processing approaches…

Here I somehow combine my two other proposals, achieving even better results. As a matter of fact I cannot see how these results could be better (especially when you look at the masked images that the method produces).

At the heart of the approach is the combination of three key assumptions:

  1. Images should have high fluctuations in the tree regions
  2. Images should have higher intensity in the tree regions
  3. Background regions should have low intensity and be mostly blue-ish

With these assumptions in mind the method works as follows:

  1. Convert the images to HSV
  2. Filter the V channel with a LoG filter
  3. Apply hard thresholding on LoG filtered image to get ‘activity’ mask A
  4. Apply hard thresholding to V channel to get intensity mask B
  5. Apply H channel thresholding to capture low intensity blue-ish regions into background mask C
  6. Combine masks using AND to get the final mask
  7. Dilate the mask to enlarge regions and connect dispersed pixels
  8. Eliminate small regions and get the final mask which will eventually represent only the tree

Here is the code in MATLAB (again, the script loads all jpg images in the current folder and, again, this is far from being an optimized piece of code):

% clear everything
clear;
pack;
close all;
close all hidden;
drawnow;
clc;

% initialization
ims=dir('./*.jpg');
imgs={};
images={}; 
blur_images={}; 
log_image={}; 
dilated_image={};
int_image={};
back_image={};
bin_image={};
measurements={};
box={};
num=length(ims);
thres_div = 3;

for i=1:num, 
    % load original image
    imgs{end+1}=imread(ims(i).name);

    % convert to HSV colorspace
    images{end+1}=rgb2hsv(imgs{i});

    % apply laplacian filtering and heuristic hard thresholding
    val_thres = (max(max(images{i}(:,:,3)))/thres_div);
    log_image{end+1} = imfilter( images{i}(:,:,3),fspecial('log')) > val_thres;

    % get the most bright regions of the image
    int_thres = 0.26*max(max( images{i}(:,:,3)));
    int_image{end+1} = images{i}(:,:,3) > int_thres;

    % get the most probable background regions of the image
    back_image{end+1} = images{i}(:,:,1)>(150/360) & images{i}(:,:,1)<(320/360) & images{i}(:,:,3)<0.5;

    % compute the final binary image by combining 
    % high 'activity' with high intensity
    bin_image{end+1} = logical( log_image{i}) & logical( int_image{i}) & ~logical( back_image{i});

    % apply morphological dilation to connect distonnected components
    strel_size = round(0.01*max(size(imgs{i})));        % structuring element for morphological dilation
    dilated_image{end+1} = imdilate( bin_image{i}, strel('disk',strel_size));

    % do some measurements to eliminate small objects
    measurements{i} = regionprops( logical( dilated_image{i}),'Area','BoundingBox');

    % iterative enlargement of the structuring element for better connectivity
    while length(measurements{i})>14 && strel_size<(min(size(imgs{i}(:,:,1)))/2),
        strel_size = round( 1.5 * strel_size);
        dilated_image{i} = imdilate( bin_image{i}, strel('disk',strel_size));
        measurements{i} = regionprops( logical( dilated_image{i}),'Area','BoundingBox');
    end

    for m=1:length(measurements{i})
        if measurements{i}(m).Area < 0.05*numel( dilated_image{i})
            dilated_image{i}( round(measurements{i}(m).BoundingBox(2):measurements{i}(m).BoundingBox(4)+measurements{i}(m).BoundingBox(2)),...
                round(measurements{i}(m).BoundingBox(1):measurements{i}(m).BoundingBox(3)+measurements{i}(m).BoundingBox(1))) = 0;
        end
    end
    % make sure the dilated image is the same size with the original
    dilated_image{i} = dilated_image{i}(1:size(imgs{i},1),1:size(imgs{i},2));
    % compute the bounding box
    [y,x] = find( dilated_image{i});
    if isempty( y)
        box{end+1}=[];
    else
        box{end+1} = [ min(x) min(y) max(x)-min(x)+1 max(y)-min(y)+1];
    end
end 

%%% additional code to display things
for i=1:num,
    figure;
    subplot(121);
    colormap gray;
    imshow( imgs{i});
    if ~isempty(box{i})
        hold on;
        rr = rectangle( 'position', box{i});
        set( rr, 'EdgeColor', 'r');
        hold off;
    end
    subplot(122);
    imshow( imgs{i}.*uint8(repmat(dilated_image{i},[1 1 3])));
end

Results

results

High resolution results still available here!
Even more experiments with additional images can be found here.


回答 5

我的解决步骤:

  1. 获取R通道(从RGB)-我们在此通道上进行的所有操作:

  2. 创建兴趣区(ROI)

    • 最小值为149的阈值R通道(右上图)

    • 扩大结果区域(左中图)

  3. 在计算的投资回报率中检测矿石。树有很多边缘(右中图)

    • 膨胀结果

    • 半径较大的腐蚀(左下图)

  4. 选择最大的(按区域)对象-这是结果区域

  5. ConvexHull(树是凸多边形)(右下图)

  6. 边界框(右下图-grren框)

一步步: 在此处输入图片说明

第一个结果-最简单但不是开源软件-“ Adaptive Vision Studio + Adaptive Vision Library”:这不是开源的,但原型制作起来确实非常快:

完整的圣诞树检测算法(11个块): AVL解决方案

下一步。我们需要开源解决方案。将AVL滤镜更改为OpenCV滤镜:在这里,我进行了一些更改,例如,“边缘检测”使用cvCanny滤镜,以尊重roi,我确实将区域图像与边缘图像相乘,选择了我使用的最大元素findContours + outlineArea,但是想法是相同的。

https://www.youtube.com/watch?v=sfjB3MigLH0&index=1&list=UUpSRrkMHNHiLDXgylwhWNQQ

OpenCV解决方案

我现在无法显示具有中间步骤的图像,因为我只能放置2个链接。

好的,现在我们使用openSource过滤器,但它还不是全部开源。最后一步-移植到C ++代码。我在版本2.4.4中使用了OpenCV

最终的c ++代码的结果是: 在此处输入图片说明

C ++代码也很短:

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/opencv.hpp"
#include <algorithm>
using namespace cv;

int main()
{

    string images[6] = {"..\\1.png","..\\2.png","..\\3.png","..\\4.png","..\\5.png","..\\6.png"};

    for(int i = 0; i < 6; ++i)
    {
        Mat img, thresholded, tdilated, tmp, tmp1;
        vector<Mat> channels(3);

        img = imread(images[i]);
        split(img, channels);
        threshold( channels[2], thresholded, 149, 255, THRESH_BINARY);                      //prepare ROI - threshold
        dilate( thresholded, tdilated,  getStructuringElement( MORPH_RECT, Size(22,22) ) ); //prepare ROI - dilate
        Canny( channels[2], tmp, 75, 125, 3, true );    //Canny edge detection
        multiply( tmp, tdilated, tmp1 );    // set ROI

        dilate( tmp1, tmp, getStructuringElement( MORPH_RECT, Size(20,16) ) ); // dilate
        erode( tmp, tmp1, getStructuringElement( MORPH_RECT, Size(36,36) ) ); // erode

        vector<vector<Point> > contours, contours1(1);
        vector<Point> convex;
        vector<Vec4i> hierarchy;
        findContours( tmp1, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0) );

        //get element of maximum area
        //int bestID = std::max_element( contours.begin(), contours.end(), 
        //  []( const vector<Point>& A, const vector<Point>& B ) { return contourArea(A) < contourArea(B); } ) - contours.begin();

            int bestID = 0;
        int bestArea = contourArea( contours[0] );
        for( int i = 1; i < contours.size(); ++i )
        {
            int area = contourArea( contours[i] );
            if( area > bestArea )
            {
                bestArea  = area;
                bestID = i;
            }
        }

        convexHull( contours[bestID], contours1[0] ); 
        drawContours( img, contours1, 0, Scalar( 100, 100, 255 ), img.rows / 100, 8, hierarchy, 0, Point() );

        imshow("image", img );
        waitKey(0);
    }


    return 0;
}

My solution steps:

  1. Get R channel (from RGB) – all operations we make on this channel:

  2. Create Region of Interest (ROI)

    • Threshold R channel with min value 149 (top right image)

    • Dilate result region (middle left image)

  3. Detect eges in computed roi. Tree has a lot of edges (middle right image)

    • Dilate result

    • Erode with bigger radius ( bottom left image)

  4. Select the biggest (by area) object – it’s the result region

  5. ConvexHull ( tree is convex polygon ) ( bottom right image )

  6. Bounding box (bottom right image – grren box )

Step by step: enter image description here

The first result – most simple but not in open source software – “Adaptive Vision Studio + Adaptive Vision Library”: This is not open source but really fast to prototype:

Whole algorithm to detect christmas tree (11 blocks): AVL solution

Next step. We want open source solution. Change AVL filters to OpenCV filters: Here I did little changes e.g. Edge Detection use cvCanny filter, to respect roi i did multiply region image with edges image, to select the biggest element i used findContours + contourArea but idea is the same.

https://www.youtube.com/watch?v=sfjB3MigLH0&index=1&list=UUpSRrkMHNHiLDXgylwhWNQQ

OpenCV solution

I can’t show images with intermediate steps now because I can put only 2 links.

Ok now we use openSource filters but it’s not still whole open source. Last step – port to c++ code. I used OpenCV in version 2.4.4

The result of final c++ code is: enter image description here

c++ code is also quite short:

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/opencv.hpp"
#include <algorithm>
using namespace cv;

int main()
{

    string images[6] = {"..\\1.png","..\\2.png","..\\3.png","..\\4.png","..\\5.png","..\\6.png"};

    for(int i = 0; i < 6; ++i)
    {
        Mat img, thresholded, tdilated, tmp, tmp1;
        vector<Mat> channels(3);

        img = imread(images[i]);
        split(img, channels);
        threshold( channels[2], thresholded, 149, 255, THRESH_BINARY);                      //prepare ROI - threshold
        dilate( thresholded, tdilated,  getStructuringElement( MORPH_RECT, Size(22,22) ) ); //prepare ROI - dilate
        Canny( channels[2], tmp, 75, 125, 3, true );    //Canny edge detection
        multiply( tmp, tdilated, tmp1 );    // set ROI

        dilate( tmp1, tmp, getStructuringElement( MORPH_RECT, Size(20,16) ) ); // dilate
        erode( tmp, tmp1, getStructuringElement( MORPH_RECT, Size(36,36) ) ); // erode

        vector<vector<Point> > contours, contours1(1);
        vector<Point> convex;
        vector<Vec4i> hierarchy;
        findContours( tmp1, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0) );

        //get element of maximum area
        //int bestID = std::max_element( contours.begin(), contours.end(), 
        //  []( const vector<Point>& A, const vector<Point>& B ) { return contourArea(A) < contourArea(B); } ) - contours.begin();

            int bestID = 0;
        int bestArea = contourArea( contours[0] );
        for( int i = 1; i < contours.size(); ++i )
        {
            int area = contourArea( contours[i] );
            if( area > bestArea )
            {
                bestArea  = area;
                bestID = i;
            }
        }

        convexHull( contours[bestID], contours1[0] ); 
        drawContours( img, contours1, 0, Scalar( 100, 100, 255 ), img.rows / 100, 8, hierarchy, 0, Point() );

        imshow("image", img );
        waitKey(0);
    }


    return 0;
}

回答 6

…另一种老式解决方案-完全基于HSV处理

  1. 将图像转换为HSV色彩空间
  2. 根据HSV中的启发式方法创建蒙版(请参见下文)
  3. 对面罩进行形态学扩张以连接断开的区域
  4. 丢弃小区域和水平块(记住树是垂直块)
  5. 计算边界框

一个字的启发式在HSV处理:

  1. 色调(H)在210-320度之间的所有物体被丢弃为蓝紫色,应该是在背景或不相关的区域
  2. 一切与值(V)降低40%也被丢弃,因为太暗是相关

当然,可以尝试许多其他可能性来微调这种方法。

这是实现此技巧的MATLAB代码(警告:代码远未优化!!!我使用了不推荐用于MATLAB编程的技术,只是为了能够跟踪过程中的任何内容,因此可以对其进行极大地优化):

% clear everything
clear;
pack;
close all;
close all hidden;
drawnow;
clc;

% initialization
ims=dir('./*.jpg');
num=length(ims);

imgs={};
hsvs={}; 
masks={};
dilated_images={};
measurements={};
boxs={};

for i=1:num, 
    % load original image
    imgs{end+1} = imread(ims(i).name);
    flt_x_size = round(size(imgs{i},2)*0.005);
    flt_y_size = round(size(imgs{i},1)*0.005);
    flt = fspecial( 'average', max( flt_y_size, flt_x_size));
    imgs{i} = imfilter( imgs{i}, flt, 'same');
    % convert to HSV colorspace
    hsvs{end+1} = rgb2hsv(imgs{i});
    % apply a hard thresholding and binary operation to construct the mask
    masks{end+1} = medfilt2( ~(hsvs{i}(:,:,1)>(210/360) & hsvs{i}(:,:,1)<(320/360))&hsvs{i}(:,:,3)>0.4);
    % apply morphological dilation to connect distonnected components
    strel_size = round(0.03*max(size(imgs{i})));        % structuring element for morphological dilation
    dilated_images{end+1} = imdilate( masks{i}, strel('disk',strel_size));
    % do some measurements to eliminate small objects
    measurements{i} = regionprops( dilated_images{i},'Perimeter','Area','BoundingBox'); 
    for m=1:length(measurements{i})
        if (measurements{i}(m).Area < 0.02*numel( dilated_images{i})) || (measurements{i}(m).BoundingBox(3)>1.2*measurements{i}(m).BoundingBox(4))
            dilated_images{i}( round(measurements{i}(m).BoundingBox(2):measurements{i}(m).BoundingBox(4)+measurements{i}(m).BoundingBox(2)),...
                round(measurements{i}(m).BoundingBox(1):measurements{i}(m).BoundingBox(3)+measurements{i}(m).BoundingBox(1))) = 0;
        end
    end
    dilated_images{i} = dilated_images{i}(1:size(imgs{i},1),1:size(imgs{i},2));
    % compute the bounding box
    [y,x] = find( dilated_images{i});
    if isempty( y)
        boxs{end+1}=[];
    else
        boxs{end+1} = [ min(x) min(y) max(x)-min(x)+1 max(y)-min(y)+1];
    end

end 

%%% additional code to display things
for i=1:num,
    figure;
    subplot(121);
    colormap gray;
    imshow( imgs{i});
    if ~isempty(boxs{i})
        hold on;
        rr = rectangle( 'position', boxs{i});
        set( rr, 'EdgeColor', 'r');
        hold off;
    end
    subplot(122);
    imshow( imgs{i}.*uint8(repmat(dilated_images{i},[1 1 3])));
end

结果:

在结果中,我显示了蒙版的图像和边界框。 在此处输入图片说明

…another old fashioned solution – purely based on HSV processing:

  1. Convert images to the HSV colorspace
  2. Create masks according to heuristics in the HSV (see below)
  3. Apply morphological dilation to the mask to connect disconnected areas
  4. Discard small areas and horizontal blocks (remember trees are vertical blocks)
  5. Compute the bounding box

A word on the heuristics in the HSV processing:

  1. everything with Hues (H) between 210 – 320 degrees is discarded as blue-magenta that is supposed to be in the background or in non-relevant areas
  2. everything with Values (V) lower that 40% is also discarded as being too dark to be relevant

Of course one may experiment with numerous other possibilities to fine-tune this approach…

Here is the MATLAB code to do the trick (warning: the code is far from being optimized!!! I used techniques not recommended for MATLAB programming just to be able to track anything in the process-this can be greatly optimized):

% clear everything
clear;
pack;
close all;
close all hidden;
drawnow;
clc;

% initialization
ims=dir('./*.jpg');
num=length(ims);

imgs={};
hsvs={}; 
masks={};
dilated_images={};
measurements={};
boxs={};

for i=1:num, 
    % load original image
    imgs{end+1} = imread(ims(i).name);
    flt_x_size = round(size(imgs{i},2)*0.005);
    flt_y_size = round(size(imgs{i},1)*0.005);
    flt = fspecial( 'average', max( flt_y_size, flt_x_size));
    imgs{i} = imfilter( imgs{i}, flt, 'same');
    % convert to HSV colorspace
    hsvs{end+1} = rgb2hsv(imgs{i});
    % apply a hard thresholding and binary operation to construct the mask
    masks{end+1} = medfilt2( ~(hsvs{i}(:,:,1)>(210/360) & hsvs{i}(:,:,1)<(320/360))&hsvs{i}(:,:,3)>0.4);
    % apply morphological dilation to connect distonnected components
    strel_size = round(0.03*max(size(imgs{i})));        % structuring element for morphological dilation
    dilated_images{end+1} = imdilate( masks{i}, strel('disk',strel_size));
    % do some measurements to eliminate small objects
    measurements{i} = regionprops( dilated_images{i},'Perimeter','Area','BoundingBox'); 
    for m=1:length(measurements{i})
        if (measurements{i}(m).Area < 0.02*numel( dilated_images{i})) || (measurements{i}(m).BoundingBox(3)>1.2*measurements{i}(m).BoundingBox(4))
            dilated_images{i}( round(measurements{i}(m).BoundingBox(2):measurements{i}(m).BoundingBox(4)+measurements{i}(m).BoundingBox(2)),...
                round(measurements{i}(m).BoundingBox(1):measurements{i}(m).BoundingBox(3)+measurements{i}(m).BoundingBox(1))) = 0;
        end
    end
    dilated_images{i} = dilated_images{i}(1:size(imgs{i},1),1:size(imgs{i},2));
    % compute the bounding box
    [y,x] = find( dilated_images{i});
    if isempty( y)
        boxs{end+1}=[];
    else
        boxs{end+1} = [ min(x) min(y) max(x)-min(x)+1 max(y)-min(y)+1];
    end

end 

%%% additional code to display things
for i=1:num,
    figure;
    subplot(121);
    colormap gray;
    imshow( imgs{i});
    if ~isempty(boxs{i})
        hold on;
        rr = rectangle( 'position', boxs{i});
        set( rr, 'EdgeColor', 'r');
        hold off;
    end
    subplot(122);
    imshow( imgs{i}.*uint8(repmat(dilated_images{i},[1 1 3])));
end

Results:

In the results I show the masked image and the bounding box. enter image description here


回答 7

一些老式的图像处理方法…
这个想法是基于这样的假设,即图像在通常较暗和较平滑的背景(在某些情况下为前景)上描绘了发光的树。该点燃树面积更“有活力”,具有较高的强度
流程如下:

  1. 转换为灰度
  2. 应用LoG过滤以获取最“活跃”的区域
  3. 应用专心的阈值以获得最明亮的区域
  4. 结合之前的2个以获得初步的蒙版
  5. 应用形态学扩张来扩大区域并连接相邻的组件
  6. 根据面积缩小消除候选区域

您得到的是每个图像的二进制掩码和边界框。

这是使用这种幼稚技术的结果: 在此处输入图片说明

MATLAB上 的代码如下:该代码在包含JPG图像的文件夹上运行。加载所有图像并返回检测到的结果。

% clear everything
clear;
pack;
close all;
close all hidden;
drawnow;
clc;

% initialization
ims=dir('./*.jpg');
imgs={};
images={}; 
blur_images={}; 
log_image={}; 
dilated_image={};
int_image={};
bin_image={};
measurements={};
box={};
num=length(ims);
thres_div = 3;

for i=1:num, 
    % load original image
    imgs{end+1}=imread(ims(i).name);

    % convert to grayscale
    images{end+1}=rgb2gray(imgs{i});

    % apply laplacian filtering and heuristic hard thresholding
    val_thres = (max(max(images{i}))/thres_div);
    log_image{end+1} = imfilter( images{i},fspecial('log')) > val_thres;

    % get the most bright regions of the image
    int_thres = 0.26*max(max( images{i}));
    int_image{end+1} = images{i} > int_thres;

    % compute the final binary image by combining 
    % high 'activity' with high intensity
    bin_image{end+1} = log_image{i} .* int_image{i};

    % apply morphological dilation to connect distonnected components
    strel_size = round(0.01*max(size(imgs{i})));        % structuring element for morphological dilation
    dilated_image{end+1} = imdilate( bin_image{i}, strel('disk',strel_size));

    % do some measurements to eliminate small objects
    measurements{i} = regionprops( logical( dilated_image{i}),'Area','BoundingBox');
    for m=1:length(measurements{i})
        if measurements{i}(m).Area < 0.05*numel( dilated_image{i})
            dilated_image{i}( round(measurements{i}(m).BoundingBox(2):measurements{i}(m).BoundingBox(4)+measurements{i}(m).BoundingBox(2)),...
                round(measurements{i}(m).BoundingBox(1):measurements{i}(m).BoundingBox(3)+measurements{i}(m).BoundingBox(1))) = 0;
        end
    end
    % make sure the dilated image is the same size with the original
    dilated_image{i} = dilated_image{i}(1:size(imgs{i},1),1:size(imgs{i},2));
    % compute the bounding box
    [y,x] = find( dilated_image{i});
    if isempty( y)
        box{end+1}=[];
    else
        box{end+1} = [ min(x) min(y) max(x)-min(x)+1 max(y)-min(y)+1];
    end
end 

%%% additional code to display things
for i=1:num,
    figure;
    subplot(121);
    colormap gray;
    imshow( imgs{i});
    if ~isempty(box{i})
        hold on;
        rr = rectangle( 'position', box{i});
        set( rr, 'EdgeColor', 'r');
        hold off;
    end
    subplot(122);
    imshow( imgs{i}.*uint8(repmat(dilated_image{i},[1 1 3])));
end

Some old-fashioned image processing approach…
The idea is based on the assumption that images depict lighted trees on typically darker and smoother backgrounds (or foregrounds in some cases). The lighted tree area is more “energetic” and has higher intensity.
The process is as follows:

  1. Convert to graylevel
  2. Apply LoG filtering to get the most “active” areas
  3. Apply an intentisy thresholding to get the most bright areas
  4. Combine the previous 2 to get a preliminary mask
  5. Apply a morphological dilation to enlarge areas and connect neighboring components
  6. Eliminate small candidate areas according to their area size

What you get is a binary mask and a bounding box for each image.

Here are the results using this naive technique: enter image description here

Code on MATLAB follows: The code runs on a folder with JPG images. Loads all images and returns detected results.

% clear everything
clear;
pack;
close all;
close all hidden;
drawnow;
clc;

% initialization
ims=dir('./*.jpg');
imgs={};
images={}; 
blur_images={}; 
log_image={}; 
dilated_image={};
int_image={};
bin_image={};
measurements={};
box={};
num=length(ims);
thres_div = 3;

for i=1:num, 
    % load original image
    imgs{end+1}=imread(ims(i).name);

    % convert to grayscale
    images{end+1}=rgb2gray(imgs{i});

    % apply laplacian filtering and heuristic hard thresholding
    val_thres = (max(max(images{i}))/thres_div);
    log_image{end+1} = imfilter( images{i},fspecial('log')) > val_thres;

    % get the most bright regions of the image
    int_thres = 0.26*max(max( images{i}));
    int_image{end+1} = images{i} > int_thres;

    % compute the final binary image by combining 
    % high 'activity' with high intensity
    bin_image{end+1} = log_image{i} .* int_image{i};

    % apply morphological dilation to connect distonnected components
    strel_size = round(0.01*max(size(imgs{i})));        % structuring element for morphological dilation
    dilated_image{end+1} = imdilate( bin_image{i}, strel('disk',strel_size));

    % do some measurements to eliminate small objects
    measurements{i} = regionprops( logical( dilated_image{i}),'Area','BoundingBox');
    for m=1:length(measurements{i})
        if measurements{i}(m).Area < 0.05*numel( dilated_image{i})
            dilated_image{i}( round(measurements{i}(m).BoundingBox(2):measurements{i}(m).BoundingBox(4)+measurements{i}(m).BoundingBox(2)),...
                round(measurements{i}(m).BoundingBox(1):measurements{i}(m).BoundingBox(3)+measurements{i}(m).BoundingBox(1))) = 0;
        end
    end
    % make sure the dilated image is the same size with the original
    dilated_image{i} = dilated_image{i}(1:size(imgs{i},1),1:size(imgs{i},2));
    % compute the bounding box
    [y,x] = find( dilated_image{i});
    if isempty( y)
        box{end+1}=[];
    else
        box{end+1} = [ min(x) min(y) max(x)-min(x)+1 max(y)-min(y)+1];
    end
end 

%%% additional code to display things
for i=1:num,
    figure;
    subplot(121);
    colormap gray;
    imshow( imgs{i});
    if ~isempty(box{i})
        hold on;
        rr = rectangle( 'position', box{i});
        set( rr, 'EdgeColor', 'r');
        hold off;
    end
    subplot(122);
    imshow( imgs{i}.*uint8(repmat(dilated_image{i},[1 1 3])));
end

回答 8

使用与我所见不同的方法,我创建了一个 通过它们的灯光检测圣诞树的脚本。结果始终是对称的三角形,如有必要,还可以使用数字值,例如树的角度(“脂肪度”)。

显然,此算法的最大威胁是(大量)或树前(更大的问题,直到进一步优化)旁边的灯。编辑(添加):做不到的事情:找出是否有一棵圣诞树,在一幅图像中找到多棵圣诞树,正确检测拉斯维加斯中部的圣诞前夜树,检测严重弯曲的圣诞树,倒置或切碎…;)

不同的阶段是:

  • 计算每个像素的附加亮度(R + G + B)
  • 将每个像素上方所有8个相邻像素的值相加
  • 按此值对所有像素进行排名(最亮的优先)-我知道,不是很细微…
  • 从顶部开始选择N个,跳过距离太近的
  • 计算 这前N个(给我们大约树的中心)
  • 从中位数位置开始,在一个加宽的搜索光束中,从所选的最亮光源发出的最上面的光线(人们倾向于在最上方放置至少一个光线)
  • 从那里开始,想象线条向左和向右向下倾斜60度(圣诞节树不应该那么胖)
  • 降低60度,直到20%的最亮的光不在此三角形内
  • 在三角形的最底部找到光线,为您提供树的下部水平边框
  • 完成了

标记说明:

  • 树中心的大红十字:N个最亮的灯光的中位数
  • 从上方向上的虚线:“搜索光束”为树的顶部
  • 较小的红十字:树顶
  • 很小的红叉:所有N个最亮的灯
  • 红色三角形:D!

源代码:

<?php

ini_set('memory_limit', '1024M');

header("Content-type: image/png");

$chosenImage = 6;

switch($chosenImage){
    case 1:
        $inputImage     = imagecreatefromjpeg("nmzwj.jpg");
        break;
    case 2:
        $inputImage     = imagecreatefromjpeg("2y4o5.jpg");
        break;
    case 3:
        $inputImage     = imagecreatefromjpeg("YowlH.jpg");
        break;
    case 4:
        $inputImage     = imagecreatefromjpeg("2K9Ef.jpg");
        break;
    case 5:
        $inputImage     = imagecreatefromjpeg("aVZhC.jpg");
        break;
    case 6:
        $inputImage     = imagecreatefromjpeg("FWhSP.jpg");
        break;
    case 7:
        $inputImage     = imagecreatefromjpeg("roemerberg.jpg");
        break;
    default:
        exit();
}

// Process the loaded image

$topNspots = processImage($inputImage);

imagejpeg($inputImage);
imagedestroy($inputImage);

// Here be functions

function processImage($image) {
    $orange = imagecolorallocate($image, 220, 210, 60);
    $black = imagecolorallocate($image, 0, 0, 0);
    $red = imagecolorallocate($image, 255, 0, 0);

    $maxX = imagesx($image)-1;
    $maxY = imagesy($image)-1;

    // Parameters
    $spread = 1; // Number of pixels to each direction that will be added up
    $topPositions = 80; // Number of (brightest) lights taken into account
    $minLightDistance = round(min(array($maxX, $maxY)) / 30); // Minimum number of pixels between the brigtests lights
    $searchYperX = 5; // spread of the "search beam" from the median point to the top

    $renderStage = 3; // 1 to 3; exits the process early


    // STAGE 1
    // Calculate the brightness of each pixel (R+G+B)

    $maxBrightness = 0;
    $stage1array = array();

    for($row = 0; $row <= $maxY; $row++) {

        $stage1array[$row] = array();

        for($col = 0; $col <= $maxX; $col++) {

            $rgb = imagecolorat($image, $col, $row);
            $brightness = getBrightnessFromRgb($rgb);
            $stage1array[$row][$col] = $brightness;

            if($renderStage == 1){
                $brightnessToGrey = round($brightness / 765 * 256);
                $greyRgb = imagecolorallocate($image, $brightnessToGrey, $brightnessToGrey, $brightnessToGrey);
                imagesetpixel($image, $col, $row, $greyRgb);
            }

            if($brightness > $maxBrightness) {
                $maxBrightness = $brightness;
                if($renderStage == 1){
                    imagesetpixel($image, $col, $row, $red);
                }
            }
        }
    }
    if($renderStage == 1) {
        return;
    }


    // STAGE 2
    // Add up brightness of neighbouring pixels

    $stage2array = array();
    $maxStage2 = 0;

    for($row = 0; $row <= $maxY; $row++) {
        $stage2array[$row] = array();

        for($col = 0; $col <= $maxX; $col++) {
            if(!isset($stage2array[$row][$col])) $stage2array[$row][$col] = 0;

            // Look around the current pixel, add brightness
            for($y = $row-$spread; $y <= $row+$spread; $y++) {
                for($x = $col-$spread; $x <= $col+$spread; $x++) {

                    // Don't read values from outside the image
                    if($x >= 0 && $x <= $maxX && $y >= 0 && $y <= $maxY){
                        $stage2array[$row][$col] += $stage1array[$y][$x]+10;
                    }
                }
            }

            $stage2value = $stage2array[$row][$col];
            if($stage2value > $maxStage2) {
                $maxStage2 = $stage2value;
            }
        }
    }

    if($renderStage >= 2){
        // Paint the accumulated light, dimmed by the maximum value from stage 2
        for($row = 0; $row <= $maxY; $row++) {
            for($col = 0; $col <= $maxX; $col++) {
                $brightness = round($stage2array[$row][$col] / $maxStage2 * 255);
                $greyRgb = imagecolorallocate($image, $brightness, $brightness, $brightness);
                imagesetpixel($image, $col, $row, $greyRgb);
            }
        }
    }

    if($renderStage == 2) {
        return;
    }


    // STAGE 3

    // Create a ranking of bright spots (like "Top 20")
    $topN = array();

    for($row = 0; $row <= $maxY; $row++) {
        for($col = 0; $col <= $maxX; $col++) {

            $stage2Brightness = $stage2array[$row][$col];
            $topN[$col.":".$row] = $stage2Brightness;
        }
    }
    arsort($topN);

    $topNused = array();
    $topPositionCountdown = $topPositions;

    if($renderStage == 3){
        foreach ($topN as $key => $val) {
            if($topPositionCountdown <= 0){
                break;
            }

            $position = explode(":", $key);

            foreach($topNused as $usedPosition => $usedValue) {
                $usedPosition = explode(":", $usedPosition);
                $distance = abs($usedPosition[0] - $position[0]) + abs($usedPosition[1] - $position[1]);
                if($distance < $minLightDistance) {
                    continue 2;
                }
            }

            $topNused[$key] = $val;

            paintCrosshair($image, $position[0], $position[1], $red, 2);

            $topPositionCountdown--;

        }
    }


    // STAGE 4
    // Median of all Top N lights
    $topNxValues = array();
    $topNyValues = array();

    foreach ($topNused as $key => $val) {
        $position = explode(":", $key);
        array_push($topNxValues, $position[0]);
        array_push($topNyValues, $position[1]);
    }

    $medianXvalue = round(calculate_median($topNxValues));
    $medianYvalue = round(calculate_median($topNyValues));
    paintCrosshair($image, $medianXvalue, $medianYvalue, $red, 15);


    // STAGE 5
    // Find treetop

    $filename = 'debug.log';
    $handle = fopen($filename, "w");
    fwrite($handle, "\n\n STAGE 5");

    $treetopX = $medianXvalue;
    $treetopY = $medianYvalue;

    $searchXmin = $medianXvalue;
    $searchXmax = $medianXvalue;

    $width = 0;
    for($y = $medianYvalue; $y >= 0; $y--) {
        fwrite($handle, "\nAt y = ".$y);

        if(($y % $searchYperX) == 0) { // Modulo
            $width++;
            $searchXmin = $medianXvalue - $width;
            $searchXmax = $medianXvalue + $width;
            imagesetpixel($image, $searchXmin, $y, $red);
            imagesetpixel($image, $searchXmax, $y, $red);
        }

        foreach ($topNused as $key => $val) {
            $position = explode(":", $key); // "x:y"

            if($position[1] != $y){
                continue;
            }

            if($position[0] >= $searchXmin && $position[0] <= $searchXmax){
                $treetopX = $position[0];
                $treetopY = $y;
            }
        }

    }

    paintCrosshair($image, $treetopX, $treetopY, $red, 5);


    // STAGE 6
    // Find tree sides
    fwrite($handle, "\n\n STAGE 6");

    $treesideAngle = 60; // The extremely "fat" end of a christmas tree
    $treeBottomY = $treetopY;

    $topPositionsExcluded = 0;
    $xymultiplier = 0;
    while(($topPositionsExcluded < ($topPositions / 5)) && $treesideAngle >= 1){
        fwrite($handle, "\n\nWe're at angle ".$treesideAngle);
        $xymultiplier = sin(deg2rad($treesideAngle));
        fwrite($handle, "\nMultiplier: ".$xymultiplier);

        $topPositionsExcluded = 0;
        foreach ($topNused as $key => $val) {
            $position = explode(":", $key);
            fwrite($handle, "\nAt position ".$key);

            if($position[1] > $treeBottomY) {
                $treeBottomY = $position[1];
            }

            // Lights above the tree are outside of it, but don't matter
            if($position[1] < $treetopY){
                $topPositionsExcluded++;
                fwrite($handle, "\nTOO HIGH");
                continue;
            }

            // Top light will generate division by zero
            if($treetopY-$position[1] == 0) {
                fwrite($handle, "\nDIVISION BY ZERO");
                continue;
            }

            // Lights left end right of it are also not inside
            fwrite($handle, "\nLight position factor: ".(abs($treetopX-$position[0]) / abs($treetopY-$position[1])));
            if((abs($treetopX-$position[0]) / abs($treetopY-$position[1])) > $xymultiplier){
                $topPositionsExcluded++;
                fwrite($handle, "\n --- Outside tree ---");
            }
        }

        $treesideAngle--;
    }
    fclose($handle);

    // Paint tree's outline
    $treeHeight = abs($treetopY-$treeBottomY);
    $treeBottomLeft = 0;
    $treeBottomRight = 0;
    $previousState = false; // line has not started; assumes the tree does not "leave"^^

    for($x = 0; $x <= $maxX; $x++){
        if(abs($treetopX-$x) != 0 && abs($treetopX-$x) / $treeHeight > $xymultiplier){
            if($previousState == true){
                $treeBottomRight = $x;
                $previousState = false;
            }
            continue;
        }
        imagesetpixel($image, $x, $treeBottomY, $red);
        if($previousState == false){
            $treeBottomLeft = $x;
            $previousState = true;
        }
    }
    imageline($image, $treeBottomLeft, $treeBottomY, $treetopX, $treetopY, $red);
    imageline($image, $treeBottomRight, $treeBottomY, $treetopX, $treetopY, $red);


    // Print out some parameters

    $string = "Min dist: ".$minLightDistance." | Tree angle: ".$treesideAngle." deg | Tree bottom: ".$treeBottomY;

    $px     = (imagesx($image) - 6.5 * strlen($string)) / 2;
    imagestring($image, 2, $px, 5, $string, $orange);

    return $topN;
}

/**
 * Returns values from 0 to 765
 */
function getBrightnessFromRgb($rgb) {
    $r = ($rgb >> 16) & 0xFF;
    $g = ($rgb >> 8) & 0xFF;
    $b = $rgb & 0xFF;

    return $r+$r+$b;
}

function paintCrosshair($image, $posX, $posY, $color, $size=5) {
    for($x = $posX-$size; $x <= $posX+$size; $x++) {
        if($x>=0 && $x < imagesx($image)){
            imagesetpixel($image, $x, $posY, $color);
        }
    }
    for($y = $posY-$size; $y <= $posY+$size; $y++) {
        if($y>=0 && $y < imagesy($image)){
            imagesetpixel($image, $posX, $y, $color);
        }
    }
}

// From http://www.mdj.us/web-development/php-programming/calculating-the-median-average-values-of-an-array-with-php/
function calculate_median($arr) {
    sort($arr);
    $count = count($arr); //total numbers in array
    $middleval = floor(($count-1)/2); // find the middle value, or the lowest middle value
    if($count % 2) { // odd number, middle is the median
        $median = $arr[$middleval];
    } else { // even number, calculate avg of 2 medians
        $low = $arr[$middleval];
        $high = $arr[$middleval+1];
        $median = (($low+$high)/2);
    }
    return $median;
}


?>

图片: 左上下中心左下右上方上中右下

奖励:来自维基百科的德国人Weihnachtsbaum,网址:http://commons.wikimedia.org/wiki/File:Weihnachtsbaum_R%C3%B6merberg.jpg 罗默贝格

Using a quite different approach from what I’ve seen, I created a script that detects christmas trees by their lights. The result ist always a symmetrical triangle, and if necessary numeric values like the angle (“fatness”) of the tree.

The biggest threat to this algorithm obviously are lights next to (in great numbers) or in front of the tree (the greater problem until further optimization). Edit (added): What it can’t do: Find out if there’s a christmas tree or not, find multiple christmas trees in one image, correctly detect a cristmas tree in the middle of Las Vegas, detect christmas trees that are heavily bent, upside-down or chopped down… ;)

The different stages are:

  • Calculate the added brightness (R+G+B) for each pixel
  • Add up this value of all 8 neighbouring pixels on top of each pixel
  • Rank all pixels by this value (brightest first) – I know, not really subtle…
  • Choose N of these, starting from the top, skipping ones that are too close
  • Calculate the of these top N (gives us the approximate center of the tree)
  • Start from the median position upwards in a widening search beam for the topmost light from the selected brightest ones (people tend to put at least one light at the very top)
  • From there, imagine lines going 60 degrees left and right downwards (christmas trees shouldn’t be that fat)
  • Decrease those 60 degrees until 20% of the brightest lights are outside this triangle
  • Find the light at the very bottom of the triangle, giving you the lower horizontal border of the tree
  • Done

Explanation of the markings:

  • Big red cross in the center of the tree: Median of the top N brightest lights
  • Dotted line from there upwards: “search beam” for the top of the tree
  • Smaller red cross: top of the tree
  • Really small red crosses: All of the top N brightest lights
  • Red triangle: D’uh!

Source code:

<?php

ini_set('memory_limit', '1024M');

header("Content-type: image/png");

$chosenImage = 6;

switch($chosenImage){
    case 1:
        $inputImage     = imagecreatefromjpeg("nmzwj.jpg");
        break;
    case 2:
        $inputImage     = imagecreatefromjpeg("2y4o5.jpg");
        break;
    case 3:
        $inputImage     = imagecreatefromjpeg("YowlH.jpg");
        break;
    case 4:
        $inputImage     = imagecreatefromjpeg("2K9Ef.jpg");
        break;
    case 5:
        $inputImage     = imagecreatefromjpeg("aVZhC.jpg");
        break;
    case 6:
        $inputImage     = imagecreatefromjpeg("FWhSP.jpg");
        break;
    case 7:
        $inputImage     = imagecreatefromjpeg("roemerberg.jpg");
        break;
    default:
        exit();
}

// Process the loaded image

$topNspots = processImage($inputImage);

imagejpeg($inputImage);
imagedestroy($inputImage);

// Here be functions

function processImage($image) {
    $orange = imagecolorallocate($image, 220, 210, 60);
    $black = imagecolorallocate($image, 0, 0, 0);
    $red = imagecolorallocate($image, 255, 0, 0);

    $maxX = imagesx($image)-1;
    $maxY = imagesy($image)-1;

    // Parameters
    $spread = 1; // Number of pixels to each direction that will be added up
    $topPositions = 80; // Number of (brightest) lights taken into account
    $minLightDistance = round(min(array($maxX, $maxY)) / 30); // Minimum number of pixels between the brigtests lights
    $searchYperX = 5; // spread of the "search beam" from the median point to the top

    $renderStage = 3; // 1 to 3; exits the process early


    // STAGE 1
    // Calculate the brightness of each pixel (R+G+B)

    $maxBrightness = 0;
    $stage1array = array();

    for($row = 0; $row <= $maxY; $row++) {

        $stage1array[$row] = array();

        for($col = 0; $col <= $maxX; $col++) {

            $rgb = imagecolorat($image, $col, $row);
            $brightness = getBrightnessFromRgb($rgb);
            $stage1array[$row][$col] = $brightness;

            if($renderStage == 1){
                $brightnessToGrey = round($brightness / 765 * 256);
                $greyRgb = imagecolorallocate($image, $brightnessToGrey, $brightnessToGrey, $brightnessToGrey);
                imagesetpixel($image, $col, $row, $greyRgb);
            }

            if($brightness > $maxBrightness) {
                $maxBrightness = $brightness;
                if($renderStage == 1){
                    imagesetpixel($image, $col, $row, $red);
                }
            }
        }
    }
    if($renderStage == 1) {
        return;
    }


    // STAGE 2
    // Add up brightness of neighbouring pixels

    $stage2array = array();
    $maxStage2 = 0;

    for($row = 0; $row <= $maxY; $row++) {
        $stage2array[$row] = array();

        for($col = 0; $col <= $maxX; $col++) {
            if(!isset($stage2array[$row][$col])) $stage2array[$row][$col] = 0;

            // Look around the current pixel, add brightness
            for($y = $row-$spread; $y <= $row+$spread; $y++) {
                for($x = $col-$spread; $x <= $col+$spread; $x++) {

                    // Don't read values from outside the image
                    if($x >= 0 && $x <= $maxX && $y >= 0 && $y <= $maxY){
                        $stage2array[$row][$col] += $stage1array[$y][$x]+10;
                    }
                }
            }

            $stage2value = $stage2array[$row][$col];
            if($stage2value > $maxStage2) {
                $maxStage2 = $stage2value;
            }
        }
    }

    if($renderStage >= 2){
        // Paint the accumulated light, dimmed by the maximum value from stage 2
        for($row = 0; $row <= $maxY; $row++) {
            for($col = 0; $col <= $maxX; $col++) {
                $brightness = round($stage2array[$row][$col] / $maxStage2 * 255);
                $greyRgb = imagecolorallocate($image, $brightness, $brightness, $brightness);
                imagesetpixel($image, $col, $row, $greyRgb);
            }
        }
    }

    if($renderStage == 2) {
        return;
    }


    // STAGE 3

    // Create a ranking of bright spots (like "Top 20")
    $topN = array();

    for($row = 0; $row <= $maxY; $row++) {
        for($col = 0; $col <= $maxX; $col++) {

            $stage2Brightness = $stage2array[$row][$col];
            $topN[$col.":".$row] = $stage2Brightness;
        }
    }
    arsort($topN);

    $topNused = array();
    $topPositionCountdown = $topPositions;

    if($renderStage == 3){
        foreach ($topN as $key => $val) {
            if($topPositionCountdown <= 0){
                break;
            }

            $position = explode(":", $key);

            foreach($topNused as $usedPosition => $usedValue) {
                $usedPosition = explode(":", $usedPosition);
                $distance = abs($usedPosition[0] - $position[0]) + abs($usedPosition[1] - $position[1]);
                if($distance < $minLightDistance) {
                    continue 2;
                }
            }

            $topNused[$key] = $val;

            paintCrosshair($image, $position[0], $position[1], $red, 2);

            $topPositionCountdown--;

        }
    }


    // STAGE 4
    // Median of all Top N lights
    $topNxValues = array();
    $topNyValues = array();

    foreach ($topNused as $key => $val) {
        $position = explode(":", $key);
        array_push($topNxValues, $position[0]);
        array_push($topNyValues, $position[1]);
    }

    $medianXvalue = round(calculate_median($topNxValues));
    $medianYvalue = round(calculate_median($topNyValues));
    paintCrosshair($image, $medianXvalue, $medianYvalue, $red, 15);


    // STAGE 5
    // Find treetop

    $filename = 'debug.log';
    $handle = fopen($filename, "w");
    fwrite($handle, "\n\n STAGE 5");

    $treetopX = $medianXvalue;
    $treetopY = $medianYvalue;

    $searchXmin = $medianXvalue;
    $searchXmax = $medianXvalue;

    $width = 0;
    for($y = $medianYvalue; $y >= 0; $y--) {
        fwrite($handle, "\nAt y = ".$y);

        if(($y % $searchYperX) == 0) { // Modulo
            $width++;
            $searchXmin = $medianXvalue - $width;
            $searchXmax = $medianXvalue + $width;
            imagesetpixel($image, $searchXmin, $y, $red);
            imagesetpixel($image, $searchXmax, $y, $red);
        }

        foreach ($topNused as $key => $val) {
            $position = explode(":", $key); // "x:y"

            if($position[1] != $y){
                continue;
            }

            if($position[0] >= $searchXmin && $position[0] <= $searchXmax){
                $treetopX = $position[0];
                $treetopY = $y;
            }
        }

    }

    paintCrosshair($image, $treetopX, $treetopY, $red, 5);


    // STAGE 6
    // Find tree sides
    fwrite($handle, "\n\n STAGE 6");

    $treesideAngle = 60; // The extremely "fat" end of a christmas tree
    $treeBottomY = $treetopY;

    $topPositionsExcluded = 0;
    $xymultiplier = 0;
    while(($topPositionsExcluded < ($topPositions / 5)) && $treesideAngle >= 1){
        fwrite($handle, "\n\nWe're at angle ".$treesideAngle);
        $xymultiplier = sin(deg2rad($treesideAngle));
        fwrite($handle, "\nMultiplier: ".$xymultiplier);

        $topPositionsExcluded = 0;
        foreach ($topNused as $key => $val) {
            $position = explode(":", $key);
            fwrite($handle, "\nAt position ".$key);

            if($position[1] > $treeBottomY) {
                $treeBottomY = $position[1];
            }

            // Lights above the tree are outside of it, but don't matter
            if($position[1] < $treetopY){
                $topPositionsExcluded++;
                fwrite($handle, "\nTOO HIGH");
                continue;
            }

            // Top light will generate division by zero
            if($treetopY-$position[1] == 0) {
                fwrite($handle, "\nDIVISION BY ZERO");
                continue;
            }

            // Lights left end right of it are also not inside
            fwrite($handle, "\nLight position factor: ".(abs($treetopX-$position[0]) / abs($treetopY-$position[1])));
            if((abs($treetopX-$position[0]) / abs($treetopY-$position[1])) > $xymultiplier){
                $topPositionsExcluded++;
                fwrite($handle, "\n --- Outside tree ---");
            }
        }

        $treesideAngle--;
    }
    fclose($handle);

    // Paint tree's outline
    $treeHeight = abs($treetopY-$treeBottomY);
    $treeBottomLeft = 0;
    $treeBottomRight = 0;
    $previousState = false; // line has not started; assumes the tree does not "leave"^^

    for($x = 0; $x <= $maxX; $x++){
        if(abs($treetopX-$x) != 0 && abs($treetopX-$x) / $treeHeight > $xymultiplier){
            if($previousState == true){
                $treeBottomRight = $x;
                $previousState = false;
            }
            continue;
        }
        imagesetpixel($image, $x, $treeBottomY, $red);
        if($previousState == false){
            $treeBottomLeft = $x;
            $previousState = true;
        }
    }
    imageline($image, $treeBottomLeft, $treeBottomY, $treetopX, $treetopY, $red);
    imageline($image, $treeBottomRight, $treeBottomY, $treetopX, $treetopY, $red);


    // Print out some parameters

    $string = "Min dist: ".$minLightDistance." | Tree angle: ".$treesideAngle." deg | Tree bottom: ".$treeBottomY;

    $px     = (imagesx($image) - 6.5 * strlen($string)) / 2;
    imagestring($image, 2, $px, 5, $string, $orange);

    return $topN;
}

/**
 * Returns values from 0 to 765
 */
function getBrightnessFromRgb($rgb) {
    $r = ($rgb >> 16) & 0xFF;
    $g = ($rgb >> 8) & 0xFF;
    $b = $rgb & 0xFF;

    return $r+$r+$b;
}

function paintCrosshair($image, $posX, $posY, $color, $size=5) {
    for($x = $posX-$size; $x <= $posX+$size; $x++) {
        if($x>=0 && $x < imagesx($image)){
            imagesetpixel($image, $x, $posY, $color);
        }
    }
    for($y = $posY-$size; $y <= $posY+$size; $y++) {
        if($y>=0 && $y < imagesy($image)){
            imagesetpixel($image, $posX, $y, $color);
        }
    }
}

// From http://www.mdj.us/web-development/php-programming/calculating-the-median-average-values-of-an-array-with-php/
function calculate_median($arr) {
    sort($arr);
    $count = count($arr); //total numbers in array
    $middleval = floor(($count-1)/2); // find the middle value, or the lowest middle value
    if($count % 2) { // odd number, middle is the median
        $median = $arr[$middleval];
    } else { // even number, calculate avg of 2 medians
        $low = $arr[$middleval];
        $high = $arr[$middleval+1];
        $median = (($low+$high)/2);
    }
    return $median;
}


?>

Images: Upper leftLower centerLower leftUpper rightUpper centerLower right

Bonus: A german Weihnachtsbaum, from Wikipedia Römerberghttp://commons.wikimedia.org/wiki/File:Weihnachtsbaum_R%C3%B6merberg.jpg


回答 9

我将python与opencv一起使用。

我的算法是这样的:

  1. 首先,它从图像中获取红色通道
  2. 将阈值(最小值200)应用于红色通道
  3. 然后应用形态学梯度,然后执行“闭合”(先扩张,然后进行侵蚀)
  4. 然后,它在平面中找到轮廓,并选择最长的轮廓。

结果:

编码:

import numpy as np
import cv2
import copy


def findTree(image,num):
    im = cv2.imread(image)
    im = cv2.resize(im, (400,250))
    gray = cv2.cvtColor(im, cv2.COLOR_RGB2GRAY)
    imf = copy.deepcopy(im)

    b,g,r = cv2.split(im)
    minR = 200
    _,thresh = cv2.threshold(r,minR,255,0)
    kernel = np.ones((25,5))
    dst = cv2.morphologyEx(thresh, cv2.MORPH_GRADIENT, kernel)
    dst = cv2.morphologyEx(dst, cv2.MORPH_CLOSE, kernel)

    contours = cv2.findContours(dst,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)[0]
    cv2.drawContours(im, contours,-1, (0,255,0), 1)

    maxI = 0
    for i in range(len(contours)):
        if len(contours[maxI]) < len(contours[i]):
            maxI = i

    img = copy.deepcopy(r)
    cv2.polylines(img,[contours[maxI]],True,(255,255,255),3)
    imf[:,:,2] = img

    cv2.imshow(str(num), imf)

def main():
    findTree('tree.jpg',1)
    findTree('tree2.jpg',2)
    findTree('tree3.jpg',3)
    findTree('tree4.jpg',4)
    findTree('tree5.jpg',5)
    findTree('tree6.jpg',6)

    cv2.waitKey(0)
    cv2.destroyAllWindows()

if __name__ == "__main__":
    main()

如果将内核从(25,5)更改为(10,5),则除左下角以外的所有树都可获得更好的结果, 在此处输入图片说明

我的算法假设这棵树上有灯,在左下方的树中,顶部的灯比其他树的灯少。

I used python with opencv.

My algorithm goes like this:

  1. First it takes the red channel from the image
  2. Apply a threshold (min value 200) to the Red channel
  3. Then apply Morphological Gradient and then do a ‘Closing’ (dilation followed by Erosion)
  4. Then it finds the contours in the plane and it picks the longest contour.

The outcome:

The code:

import numpy as np
import cv2
import copy


def findTree(image,num):
    im = cv2.imread(image)
    im = cv2.resize(im, (400,250))
    gray = cv2.cvtColor(im, cv2.COLOR_RGB2GRAY)
    imf = copy.deepcopy(im)

    b,g,r = cv2.split(im)
    minR = 200
    _,thresh = cv2.threshold(r,minR,255,0)
    kernel = np.ones((25,5))
    dst = cv2.morphologyEx(thresh, cv2.MORPH_GRADIENT, kernel)
    dst = cv2.morphologyEx(dst, cv2.MORPH_CLOSE, kernel)

    contours = cv2.findContours(dst,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)[0]
    cv2.drawContours(im, contours,-1, (0,255,0), 1)

    maxI = 0
    for i in range(len(contours)):
        if len(contours[maxI]) < len(contours[i]):
            maxI = i

    img = copy.deepcopy(r)
    cv2.polylines(img,[contours[maxI]],True,(255,255,255),3)
    imf[:,:,2] = img

    cv2.imshow(str(num), imf)

def main():
    findTree('tree.jpg',1)
    findTree('tree2.jpg',2)
    findTree('tree3.jpg',3)
    findTree('tree4.jpg',4)
    findTree('tree5.jpg',5)
    findTree('tree6.jpg',6)

    cv2.waitKey(0)
    cv2.destroyAllWindows()

if __name__ == "__main__":
    main()

If I change the kernel from (25,5) to (10,5) I get nicer results on all trees but the bottom left, enter image description here

my algorithm assumes that the tree has lights on it, and in the bottom left tree, the top has less light then the others.


声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。