问题:对于Python 3.x整数,比位移快两倍?
我正在查看sorted_containers的来源,很惊讶地看到这一行:
self._load, self._twice, self._half = load, load * 2, load >> 1
这load
是整数。为什么在一个位置使用位移,而在另一位置使用乘法?移位可能比整数除以2快,但这是合理的,但是为什么不还用移位代替乘法呢?我对以下情况进行了基准测试:
- (时间,分)
- (班次,班次)
- (时间,班次)
- (平移,除法)
并发现#3始终比其他替代方法快:
# self._load, self._twice, self._half = load, load * 2, load >> 1
import random
import timeit
import pandas as pd
x = random.randint(10 ** 3, 10 ** 6)
def test_naive():
a, b, c = x, 2 * x, x // 2
def test_shift():
a, b, c = x, x << 1, x >> 1
def test_mixed():
a, b, c = x, x * 2, x >> 1
def test_mixed_swapped():
a, b, c = x, x << 1, x // 2
def observe(k):
print(k)
return {
'naive': timeit.timeit(test_naive),
'shift': timeit.timeit(test_shift),
'mixed': timeit.timeit(test_mixed),
'mixed_swapped': timeit.timeit(test_mixed_swapped),
}
def get_observations():
return pd.DataFrame([observe(k) for k in range(100)])
问题:
我的考试有效吗?如果是这样,为什么(乘法,移位)比(移位,移位)快?
我在Ubuntu 14.04上运行Python 3.5。
编辑
以上是问题的原始陈述。Dan Getz在回答中提供了出色的解释。
为了完整起见,以下是x
不适用乘法优化时的较大示例示例。
回答 0
这似乎是因为小数的乘法在CPython 3.5中得到了优化,而小数的左移则没有。正向左移始终会创建一个较大的整数对象,以存储结果,作为计算的一部分,而对于您在测试中使用的排序的乘法,特殊的优化可避免这种情况,并创建正确大小的整数对象。这可以在Python整数实现的源代码中看到。
由于Python中的整数是任意精度的,因此它们存储为整数“数字”的数组,每个整数位数的位数受到限制。因此,在一般情况下,涉及整数的运算不是单个运算,而是需要处理多个“数字”的情况。在pyport.h中,此位限制在64位平台上定义为 30位,否则为15位。(为了简化说明,我从这里开始将其称为30。但是请注意,如果您使用的是针对32位编译的Python,则基准测试的结果取决于是否x
小于32,768。)
当操作的输入和输出保持在此30位限制内时,可以以优化的方式而不是一般的方式来处理操作。整数乘法实现的开始如下:
static PyObject *
long_mul(PyLongObject *a, PyLongObject *b)
{
PyLongObject *z;
CHECK_BINOP(a, b);
/* fast path for single-digit multiplication */
if (Py_ABS(Py_SIZE(a)) <= 1 && Py_ABS(Py_SIZE(b)) <= 1) {
stwodigits v = (stwodigits)(MEDIUM_VALUE(a)) * MEDIUM_VALUE(b);
#ifdef HAVE_LONG_LONG
return PyLong_FromLongLong((PY_LONG_LONG)v);
#else
/* if we don't have long long then we're almost certainly
using 15-bit digits, so v will fit in a long. In the
unlikely event that we're using 30-bit digits on a platform
without long long, a large v will just cause us to fall
through to the general multiplication code below. */
if (v >= LONG_MIN && v <= LONG_MAX)
return PyLong_FromLong((long)v);
#endif
}
因此,当两个整数相乘时,每个整数都适合一个30位数字,这由CPython解释器直接进行乘法运算,而不是将整数作为数组使用。(MEDIUM_VALUE()
在正整数对象上调用仅得到其第一个30位数字。)如果结果适合单个30位数字,PyLong_FromLongLong()
则将在相对较少的操作中注意到这一点,并创建一个单个数字整数对象进行存储它。
相反,左移并没有以这种方式优化,每个左移都将整数作为数组进行处理。特别是,如果您查看的源代码long_lshift()
,那么在很小但为正的左移的情况下,总是创建一个2位整数对象,只要稍后将其长度截断为1:(我的评论/*** ***/
)
static PyObject *
long_lshift(PyObject *v, PyObject *w)
{
/*** ... ***/
wordshift = shiftby / PyLong_SHIFT; /*** zero for small w ***/
remshift = shiftby - wordshift * PyLong_SHIFT; /*** w for small w ***/
oldsize = Py_ABS(Py_SIZE(a)); /*** 1 for small v > 0 ***/
newsize = oldsize + wordshift;
if (remshift)
++newsize; /*** here newsize becomes at least 2 for w > 0, v > 0 ***/
z = _PyLong_New(newsize);
/*** ... ***/
}
整数除法
您没有问过整数地板除法与右移相比性能更差的问题,因为这符合您(和我)的期望。但是,将一个小正数除以另一个小正数也不会像小乘法那样优化。每个//
都使用函数来计算商和余数long_divrem()
。该余数是针对一个带乘法的小除数计算的,并存储在新分配的整数对象中,在这种情况下,该整数对象将立即丢弃。