问题:将Pandas GroupBy输出从Series转换为DataFrame
我从这样的输入数据开始
df1 = pandas.DataFrame( {
"Name" : ["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"] ,
"City" : ["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"] } )
打印时显示为:
City Name
0 Seattle Alice
1 Seattle Bob
2 Portland Mallory
3 Seattle Mallory
4 Seattle Bob
5 Portland Mallory
分组非常简单:
g1 = df1.groupby( [ "Name", "City"] ).count()
打印产生一个GroupBy
对象:
City Name
Name City
Alice Seattle 1 1
Bob Seattle 2 2
Mallory Portland 2 2
Seattle 1 1
但是我最终想要的是另一个DataFrame对象,该对象包含GroupBy对象中的所有行。换句话说,我想得到以下结果:
City Name
Name City
Alice Seattle 1 1
Bob Seattle 2 2
Mallory Portland 2 2
Mallory Seattle 1 1
我在pandas文档中看不到如何完成此操作。任何提示都将受到欢迎。
回答 0
g1
这是一个DataFrame。但是,它具有层次结构索引:
In [19]: type(g1)
Out[19]: pandas.core.frame.DataFrame
In [20]: g1.index
Out[20]:
MultiIndex([('Alice', 'Seattle'), ('Bob', 'Seattle'), ('Mallory', 'Portland'),
('Mallory', 'Seattle')], dtype=object)
也许您想要这样的东西?
In [21]: g1.add_suffix('_Count').reset_index()
Out[21]:
Name City City_Count Name_Count
0 Alice Seattle 1 1
1 Bob Seattle 2 2
2 Mallory Portland 2 2
3 Mallory Seattle 1 1
或类似的东西:
In [36]: DataFrame({'count' : df1.groupby( [ "Name", "City"] ).size()}).reset_index()
Out[36]:
Name City count
0 Alice Seattle 1
1 Bob Seattle 2
2 Mallory Portland 2
3 Mallory Seattle 1
回答 1
我想稍微更改Wes给出的答案,因为版本0.16.2需要as_index=False
。如果未设置,则会得到一个空的数据框。
资料来源:
如果将聚集函数命名
as_index=True
为默认值列,则聚集函数将不会返回要聚集的组。分组的列将是返回对象的索引。
as_index=False
如果它们被命名为“列”,则传递将返回您正在聚合的组。聚合函数是那些减少返回的对象的尺寸,例如:
mean
,sum
,size
,count
,std
,var
,sem
,describe
,first
,last
,nth
,min
,max
。例如DataFrame.sum()
,当您这样做并取回一个时,就会发生这种情况Series
。nth可以充当减速器或过滤器,请参见此处。
import pandas as pd
df1 = pd.DataFrame({"Name":["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"],
"City":["Seattle","Seattle","Portland","Seattle","Seattle","Portland"]})
print df1
#
# City Name
#0 Seattle Alice
#1 Seattle Bob
#2 Portland Mallory
#3 Seattle Mallory
#4 Seattle Bob
#5 Portland Mallory
#
g1 = df1.groupby(["Name", "City"], as_index=False).count()
print g1
#
# City Name
#Name City
#Alice Seattle 1 1
#Bob Seattle 2 2
#Mallory Portland 2 2
# Seattle 1 1
#
编辑:
在版本0.17.1
及更高版本,您可以使用subset
的count
和reset_index
与参数name
在size
:
print df1.groupby(["Name", "City"], as_index=False ).count()
#IndexError: list index out of range
print df1.groupby(["Name", "City"]).count()
#Empty DataFrame
#Columns: []
#Index: [(Alice, Seattle), (Bob, Seattle), (Mallory, Portland), (Mallory, Seattle)]
print df1.groupby(["Name", "City"])[['Name','City']].count()
# Name City
#Name City
#Alice Seattle 1 1
#Bob Seattle 2 2
#Mallory Portland 2 2
# Seattle 1 1
print df1.groupby(["Name", "City"]).size().reset_index(name='count')
# Name City count
#0 Alice Seattle 1
#1 Bob Seattle 2
#2 Mallory Portland 2
#3 Mallory Seattle 1
count
和之间的区别在于size
,size
计算NaN值时count
不计算。
回答 2
简单地说,这应该完成任务:
import pandas as pd
grouped_df = df1.groupby( [ "Name", "City"] )
pd.DataFrame(grouped_df.size().reset_index(name = "Group_Count"))
在这里,grouped_df.size()
提取唯一的groupby计数,reset_index()
方法重置您想要的列名。最后,Dataframe()
调用pandas 函数创建一个DataFrame对象。
回答 3
关键是使用reset_index()方法。
采用:
import pandas
df1 = pandas.DataFrame( {
"Name" : ["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"] ,
"City" : ["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"] } )
g1 = df1.groupby( [ "Name", "City"] ).count().reset_index()
现在,您在g1中有了新的数据框:
回答 4
也许我误解了这个问题,但是如果您想将groupby转换回数据框,则可以使用.to_frame()。我想在执行此操作时重设索引,所以我也包括了该部分。
与问题无关的示例代码
df = df['TIME'].groupby(df['Name']).min()
df = df.to_frame()
df = df.reset_index(level=['Name',"TIME"])
回答 5
我发现这对我有用。
import numpy as np
import pandas as pd
df1 = pd.DataFrame({
"Name" : ["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"] ,
"City" : ["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"]})
df1['City_count'] = 1
df1['Name_count'] = 1
df1.groupby(['Name', 'City'], as_index=False).count()
回答 6
下面的解决方案可能更简单:
df1.reset_index().groupby( [ "Name", "City"],as_index=False ).count()
回答 7
我已经汇总了数量明智的数据并存储到数据框
almo_grp_data = pd.DataFrame({'Qty_cnt' :
almo_slt_models_data.groupby( ['orderDate','Item','State Abv']
)['Qty'].sum()}).reset_index()
回答 8
这些解决方案仅对我部分起作用,因为我正在进行多个聚合。这是我要转换为数据框的分组的示例输出:
因为我想要的不仅仅是reset_index()提供的计数,所以我写了一个手动方法将上面的图像转换为数据帧。我知道这不是最复杂的方法,因为它很冗长和明确,但这是我所需要的。基本上,使用上面说明的reset_index()方法来启动“脚手架”数据框,然后遍历分组数据框中的组配对,检索索引,针对未分组数据框执行计算,并在新的聚合数据框中设置值。
df_grouped = df[['Salary Basis', 'Job Title', 'Hourly Rate', 'Male Count', 'Female Count']]
df_grouped = df_grouped.groupby(['Salary Basis', 'Job Title'], as_index=False)
# Grouped gives us the indices we want for each grouping
# We cannot convert a groupedby object back to a dataframe, so we need to do it manually
# Create a new dataframe to work against
df_aggregated = df_grouped.size().to_frame('Total Count').reset_index()
df_aggregated['Male Count'] = 0
df_aggregated['Female Count'] = 0
df_aggregated['Job Rate'] = 0
def manualAggregations(indices_array):
temp_df = df.iloc[indices_array]
return {
'Male Count': temp_df['Male Count'].sum(),
'Female Count': temp_df['Female Count'].sum(),
'Job Rate': temp_df['Hourly Rate'].max()
}
for name, group in df_grouped:
ix = df_grouped.indices[name]
calcDict = manualAggregations(ix)
for key in calcDict:
#Salary Basis, Job Title
columns = list(name)
df_aggregated.loc[(df_aggregated['Salary Basis'] == columns[0]) &
(df_aggregated['Job Title'] == columns[1]), key] = calcDict[key]
如果不是字典,可以在for循环中内联应用计算:
df_aggregated['Male Count'].loc[(df_aggregated['Salary Basis'] == columns[0]) &
(df_aggregated['Job Title'] == columns[1])] = df['Male Count'].iloc[ix].sum()