问题:将y轴格式化为百分比

我有一个用熊猫创建的现有情节,如下所示:

df['myvar'].plot(kind='bar')

y轴的格式为float,我想将y轴更改为百分比。我发现的所有解决方案都使用ax.xyz语法,并且只能将代码放置在创建绘图的上方行下方(我无法在上面的行中添加ax = ax。)

如何在不更改上面的行的情况下将y轴格式化为百分比?

这是我找到的解决方案,但需要重新定义图

import matplotlib.pyplot as plt
import numpy as np
import matplotlib.ticker as mtick

data = [8,12,15,17,18,18.5]
perc = np.linspace(0,100,len(data))

fig = plt.figure(1, (7,4))
ax = fig.add_subplot(1,1,1)

ax.plot(perc, data)

fmt = '%.0f%%' # Format you want the ticks, e.g. '40%'
xticks = mtick.FormatStrFormatter(fmt)
ax.xaxis.set_major_formatter(xticks)

plt.show()

链接到上述解决方案:Pyplot:在x轴上使用百分比

I have an existing plot that was created with pandas like this:

df['myvar'].plot(kind='bar')

The y axis is format as float and I want to change the y axis to percentages. All of the solutions I found use ax.xyz syntax and I can only place code below the line above that creates the plot (I cannot add ax=ax to the line above.)

How can I format the y axis as percentages without changing the line above?

Here is the solution I found but requires that I redefine the plot:

import matplotlib.pyplot as plt
import numpy as np
import matplotlib.ticker as mtick

data = [8,12,15,17,18,18.5]
perc = np.linspace(0,100,len(data))

fig = plt.figure(1, (7,4))
ax = fig.add_subplot(1,1,1)

ax.plot(perc, data)

fmt = '%.0f%%' # Format you want the ticks, e.g. '40%'
xticks = mtick.FormatStrFormatter(fmt)
ax.xaxis.set_major_formatter(xticks)

plt.show()

Link to the above solution: Pyplot: using percentage on x axis


回答 0

这已经晚了几个月,但是我使用matplotlib 创建了PR#6251以添加一个新PercentFormatter类。使用此类,您只需要一行就可以重新格式化轴(如果算上的导入,则需要两行matplotlib.ticker):

import ...
import matplotlib.ticker as mtick

ax = df['myvar'].plot(kind='bar')
ax.yaxis.set_major_formatter(mtick.PercentFormatter())

PercentFormatter()接受三个参数,xmaxdecimalssymbolxmax允许您设置对应于轴上100%的值。如果数据的范围是0.0到1.0,并且要显示的范围是0%到100%,那么这很好。做吧PercentFormatter(1.0)

另外两个参数允许您设置小数点和符号后的位数。它们分别默认为None'%'decimals=None会根据您显示的轴数自动设置小数点的数量。

更新资料

PercentFormatter 已在2.1.0版的Matplotlib中引入。

This is a few months late, but I have created PR#6251 with matplotlib to add a new PercentFormatter class. With this class you just need one line to reformat your axis (two if you count the import of matplotlib.ticker):

import ...
import matplotlib.ticker as mtick

ax = df['myvar'].plot(kind='bar')
ax.yaxis.set_major_formatter(mtick.PercentFormatter())

PercentFormatter() accepts three arguments, xmax, decimals, symbol. xmax allows you to set the value that corresponds to 100% on the axis. This is nice if you have data from 0.0 to 1.0 and you want to display it from 0% to 100%. Just do PercentFormatter(1.0).

The other two parameters allow you to set the number of digits after the decimal point and the symbol. They default to None and '%', respectively. decimals=None will automatically set the number of decimal points based on how much of the axes you are showing.

Update

PercentFormatter was introduced into Matplotlib proper in version 2.1.0.


回答 1

熊猫数据框图将为ax您返回,然后您就可以开始操纵轴了。

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(100,5))

# you get ax from here
ax = df.plot()
type(ax)  # matplotlib.axes._subplots.AxesSubplot

# manipulate
vals = ax.get_yticks()
ax.set_yticklabels(['{:,.2%}'.format(x) for x in vals])

在此处输入图片说明

pandas dataframe plot will return the ax for you, And then you can start to manipulate the axes whatever you want.

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(100,5))

# you get ax from here
ax = df.plot()
type(ax)  # matplotlib.axes._subplots.AxesSubplot

# manipulate
vals = ax.get_yticks()
ax.set_yticklabels(['{:,.2%}'.format(x) for x in vals])

enter image description here


回答 2

建勋的解决方案为我完成了工作,但打破了窗口左下方的y值指示器。

我最终FuncFormatter改为使用它(并且还删除了此处建议的不必要的尾随零):

import pandas as pd
import numpy as np
from matplotlib.ticker import FuncFormatter

df = pd.DataFrame(np.random.randn(100,5))

ax = df.plot()
ax.yaxis.set_major_formatter(FuncFormatter(lambda y, _: '{:.0%}'.format(y))) 

一般来说,我建议使用FuncFormatter标签格式:它可靠且用途广泛。

在此处输入图片说明

Jianxun‘s solution did the job for me but broke the y value indicator at the bottom left of the window.

I ended up using FuncFormatterinstead (and also stripped the uneccessary trailing zeroes as suggested here):

import pandas as pd
import numpy as np
from matplotlib.ticker import FuncFormatter

df = pd.DataFrame(np.random.randn(100,5))

ax = df.plot()
ax.yaxis.set_major_formatter(FuncFormatter(lambda y, _: '{:.0%}'.format(y))) 

Generally speaking I’d recommend using FuncFormatter for label formatting: it’s reliable, and versatile.

enter image description here


回答 3

对于那些正在寻找快速一线客的人:

plt.gca().set_yticklabels(['{:.0f}%'.format(x*100) for x in plt.gca().get_yticks()]) 

或者,如果您使用Latex作为轴文本格式程序,则必须添加一个反斜杠“ \”

plt.gca().set_yticklabels(['{:.0f}\%'.format(x*100) for x in plt.gca().get_yticks()]) 

For those who are looking for the quick one-liner:

plt.gca().set_yticklabels(['{:.0f}%'.format(x*100) for x in plt.gca().get_yticks()]) 

Or if you are using Latex as the axis text formatter, you have to add one backslash ‘\’

plt.gca().set_yticklabels(['{:.0f}\%'.format(x*100) for x in plt.gca().get_yticks()]) 

回答 4

我提出了一种替代方法 seaborn

工作代码:

import pandas as pd
import seaborn as sns
data=np.random.rand(10,2)*100
df = pd.DataFrame(data, columns=['A', 'B'])
ax= sns.lineplot(data=df, markers= True)
ax.set(xlabel='xlabel', ylabel='ylabel', title='title')
#changing ylables ticks
y_value=['{:,.2f}'.format(x) + '%' for x in ax.get_yticks()]
ax.set_yticklabels(y_value)

在此处输入图片说明

I propose an alternative method using seaborn

Working code:

import pandas as pd
import seaborn as sns
data=np.random.rand(10,2)*100
df = pd.DataFrame(data, columns=['A', 'B'])
ax= sns.lineplot(data=df, markers= True)
ax.set(xlabel='xlabel', ylabel='ylabel', title='title')
#changing ylables ticks
y_value=['{:,.2f}'.format(x) + '%' for x in ax.get_yticks()]
ax.set_yticklabels(y_value)

enter image description here


回答 5

我玩游戏迟到了,但是我才意识到:ax可以替换为plt.gca()对于那些不使用轴而只是使用子图的人来说,为。

回响@Mad Physicist答案,使用该软件包PercentFormatter将是:

import matplotlib.ticker as mtick

plt.gca().yaxis.set_major_formatter(mtick.PercentFormatter(1))
#if you already have ticks in the 0 to 1 range. Otherwise see their answer

I’m late to the game but I just realize this: ax can be replaced with plt.gca() for those who are not using axes and just subplots.

Echoing @Mad Physicist answer, using the package PercentFormatter it would be:

import matplotlib.ticker as mtick

plt.gca().yaxis.set_major_formatter(mtick.PercentFormatter(1))
#if you already have ticks in the 0 to 1 range. Otherwise see their answer

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。