问题:当else做得最多时,最有效的方式来执行if-elif-elif-else语句?

我有一条if-elif-elif-else语句,其中99%的时间执行else语句:

if something == 'this':
    doThis()
elif something == 'that':
    doThat()
elif something == 'there':
    doThere()
else:
    doThisMostOfTheTime()

这个构造完成了很多,但是由于它在碰到其他情况之前会遍历所有条件,所以我觉得这不是很有效,更不用说Pythonic了。另一方面,它确实需要知道是否满足任何这些条件,因此无论如何都应该对其进行测试。

是否有人知道是否以及如何可以更有效地完成此工作,或者这仅仅是做到这一点的最佳方法?

I’ve got a in if-elif-elif-else statement in which 99% of the time, the else statement is executed:

if something == 'this':
    doThis()
elif something == 'that':
    doThat()
elif something == 'there':
    doThere()
else:
    doThisMostOfTheTime()

This construct is done a lot, but since it goes over every condition before it hits the else I have the feeling this is not very efficient, let alone Pythonic. On the other hand, it does need to know if any of those conditions are met, so it should test it anyway.

Does anybody know if and how this could be done more efficiently or is this simply the best possible way to do it?


回答 0

代码…

options.get(something, doThisMostOfTheTime)()

…看起来应该是快,但它实际上是慢于ifelifelse结构,因为它要调用一个函数,它可以在一个紧密的循环一个显著的性能开销。

考虑这些例子…

1.py

something = 'something'

for i in xrange(1000000):
    if something == 'this':
        the_thing = 1
    elif something == 'that':
        the_thing = 2
    elif something == 'there':
        the_thing = 3
    else:
        the_thing = 4

2.py

something = 'something'
options = {'this': 1, 'that': 2, 'there': 3}

for i in xrange(1000000):
    the_thing = options.get(something, 4)

3.py

something = 'something'
options = {'this': 1, 'that': 2, 'there': 3}

for i in xrange(1000000):
    if something in options:
        the_thing = options[something]
    else:
        the_thing = 4

4.py

from collections import defaultdict

something = 'something'
options = defaultdict(lambda: 4, {'this': 1, 'that': 2, 'there': 3})

for i in xrange(1000000):
    the_thing = options[something]

…并注意他们使用的CPU时间…

1.py: 160ms
2.py: 170ms
3.py: 110ms
4.py: 100ms

…使用来自的用户时间time(1)

选项#4确实有额外的内存开销,需要为每个不同的键缺失添加一个新项,因此,如果您期望数量众多的不同的键缺失,我会选择方法#3,它在原始构造。

The code…

options.get(something, doThisMostOfTheTime)()

…looks like it ought to be faster, but it’s actually slower than the ifelifelse construct, because it has to call a function, which can be a significant performance overhead in a tight loop.

Consider these examples…

1.py

something = 'something'

for i in xrange(1000000):
    if something == 'this':
        the_thing = 1
    elif something == 'that':
        the_thing = 2
    elif something == 'there':
        the_thing = 3
    else:
        the_thing = 4

2.py

something = 'something'
options = {'this': 1, 'that': 2, 'there': 3}

for i in xrange(1000000):
    the_thing = options.get(something, 4)

3.py

something = 'something'
options = {'this': 1, 'that': 2, 'there': 3}

for i in xrange(1000000):
    if something in options:
        the_thing = options[something]
    else:
        the_thing = 4

4.py

from collections import defaultdict

something = 'something'
options = defaultdict(lambda: 4, {'this': 1, 'that': 2, 'there': 3})

for i in xrange(1000000):
    the_thing = options[something]

…and note the amount of CPU time they use…

1.py: 160ms
2.py: 170ms
3.py: 110ms
4.py: 100ms

…using the user time from time(1).

Option #4 does have the additional memory overhead of adding a new item for every distinct key miss, so if you’re expecting an unbounded number of distinct key misses, I’d go with option #3, which is still a significant improvement on the original construct.


回答 1

我要创建一个字典:

options = {'this': doThis,'that' :doThat, 'there':doThere}

现在只使用:

options.get(something, doThisMostOfTheTime)()

如果somethingoptionsdict中找不到,dict.get则将返回默认值doThisMostOfTheTime

一些时间比较:

脚本:

from random import shuffle
def doThis():pass
def doThat():pass
def doThere():pass
def doSomethingElse():pass
options = {'this':doThis, 'that':doThat, 'there':doThere}
lis = range(10**4) + options.keys()*100
shuffle(lis)

def get():
    for x in lis:
        options.get(x, doSomethingElse)()

def key_in_dic():
    for x in lis:
        if x in options:
            options[x]()
        else:
            doSomethingElse()

def if_else():
    for x in lis:
        if x == 'this':
            doThis()
        elif x == 'that':
            doThat()
        elif x == 'there':
            doThere()
        else:
            doSomethingElse()

结果:

>>> from so import *
>>> %timeit get()
100 loops, best of 3: 5.06 ms per loop
>>> %timeit key_in_dic()
100 loops, best of 3: 3.55 ms per loop
>>> %timeit if_else()
100 loops, best of 3: 6.42 ms per loop

对于10**5不存在的密钥和100个有效密钥:

>>> %timeit get()
10 loops, best of 3: 84.4 ms per loop
>>> %timeit key_in_dic()
10 loops, best of 3: 50.4 ms per loop
>>> %timeit if_else()
10 loops, best of 3: 104 ms per loop

因此,对于普通字典而言,在key in options这里使用键是最有效的方法:

if key in options:
   options[key]()
else:
   doSomethingElse()

I’d create a dictionary :

options = {'this': doThis,'that' :doThat, 'there':doThere}

Now use just:

options.get(something, doThisMostOfTheTime)()

If something is not found in the options dict then dict.get will return the default value doThisMostOfTheTime

Some timing comparisons:

Script:

from random import shuffle
def doThis():pass
def doThat():pass
def doThere():pass
def doSomethingElse():pass
options = {'this':doThis, 'that':doThat, 'there':doThere}
lis = range(10**4) + options.keys()*100
shuffle(lis)

def get():
    for x in lis:
        options.get(x, doSomethingElse)()

def key_in_dic():
    for x in lis:
        if x in options:
            options[x]()
        else:
            doSomethingElse()

def if_else():
    for x in lis:
        if x == 'this':
            doThis()
        elif x == 'that':
            doThat()
        elif x == 'there':
            doThere()
        else:
            doSomethingElse()

Results:

>>> from so import *
>>> %timeit get()
100 loops, best of 3: 5.06 ms per loop
>>> %timeit key_in_dic()
100 loops, best of 3: 3.55 ms per loop
>>> %timeit if_else()
100 loops, best of 3: 6.42 ms per loop

For 10**5 non-existent keys and 100 valid keys::

>>> %timeit get()
10 loops, best of 3: 84.4 ms per loop
>>> %timeit key_in_dic()
10 loops, best of 3: 50.4 ms per loop
>>> %timeit if_else()
10 loops, best of 3: 104 ms per loop

So, for a normal dictionary checking for the key using key in options is the most efficient way here:

if key in options:
   options[key]()
else:
   doSomethingElse()

回答 2

可以使用pypy吗?

保留原始代码,但在pypy上运行可使我的速度提高50倍。

CPython:

matt$ python
Python 2.6.8 (unknown, Nov 26 2012, 10:25:03)
[GCC 4.2.1 Compatible Apple Clang 3.0 (tags/Apple/clang-211.12)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> from timeit import timeit
>>> timeit("""
... if something == 'this': pass
... elif something == 'that': pass
... elif something == 'there': pass
... else: pass
... """, "something='foo'", number=10000000)
1.728302001953125

pypy:

matt$ pypy
Python 2.7.3 (daf4a1b651e0, Dec 07 2012, 23:00:16)
[PyPy 2.0.0-beta1 with GCC 4.2.1] on darwin
Type "help", "copyright", "credits" or "license" for more information.
And now for something completely different: ``a 10th of forever is 1h45''
>>>>
>>>> from timeit import timeit
>>>> timeit("""
.... if something == 'this': pass
.... elif something == 'that': pass
.... elif something == 'there': pass
.... else: pass
.... """, "something='foo'", number=10000000)
0.03306388854980469

Are you able to use pypy?

Keeping your original code but running it on pypy gives a 50x speed-up for me.

CPython:

matt$ python
Python 2.6.8 (unknown, Nov 26 2012, 10:25:03)
[GCC 4.2.1 Compatible Apple Clang 3.0 (tags/Apple/clang-211.12)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> from timeit import timeit
>>> timeit("""
... if something == 'this': pass
... elif something == 'that': pass
... elif something == 'there': pass
... else: pass
... """, "something='foo'", number=10000000)
1.728302001953125

Pypy:

matt$ pypy
Python 2.7.3 (daf4a1b651e0, Dec 07 2012, 23:00:16)
[PyPy 2.0.0-beta1 with GCC 4.2.1] on darwin
Type "help", "copyright", "credits" or "license" for more information.
And now for something completely different: ``a 10th of forever is 1h45''
>>>>
>>>> from timeit import timeit
>>>> timeit("""
.... if something == 'this': pass
.... elif something == 'that': pass
.... elif something == 'there': pass
.... else: pass
.... """, "something='foo'", number=10000000)
0.03306388854980469

回答 3

这里是将动态条件转换为字典的if的示例。

selector = {lambda d: datetime(2014, 12, 31) >= d : 'before2015',
            lambda d: datetime(2015, 1, 1) <= d < datetime(2016, 1, 1): 'year2015',
            lambda d: datetime(2016, 1, 1) <= d < datetime(2016, 12, 31): 'year2016'}

def select_by_date(date, selector=selector):
    selected = [selector[x] for x in selector if x(date)] or ['after2016']
    return selected[0]

这是一种方法,但可能不是最Python的方法,因为对于不熟练使用Python的人来说可读性较差。

Here an example of a if with dynamic conditions translated to a dictionary.

selector = {lambda d: datetime(2014, 12, 31) >= d : 'before2015',
            lambda d: datetime(2015, 1, 1) <= d < datetime(2016, 1, 1): 'year2015',
            lambda d: datetime(2016, 1, 1) <= d < datetime(2016, 12, 31): 'year2016'}

def select_by_date(date, selector=selector):
    selected = [selector[x] for x in selector if x(date)] or ['after2016']
    return selected[0]

It is a way, but may not be the most pythonic way to do it because is less readable for whom is not fluent in Python.


回答 4

人们exec出于安全原因发出警告,但这是一个理想的案例。
这是一个简单的状态机。

Codes = {}
Codes [0] = compile('blah blah 0; nextcode = 1')
Codes [1] = compile('blah blah 1; nextcode = 2')
Codes [2] = compile('blah blah 2; nextcode = 0')

nextcode = 0
While True:
    exec(Codes[nextcode])

People warn about exec for security reasons, but this is an ideal case for it.
It’s an easy state machine.

Codes = {}
Codes [0] = compile('blah blah 0; nextcode = 1')
Codes [1] = compile('blah blah 1; nextcode = 2')
Codes [2] = compile('blah blah 2; nextcode = 0')

nextcode = 0
While True:
    exec(Codes[nextcode])

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。