问题:新型类中的方法解析顺序(MRO)?
在《Nutshell的Python》(第2版)一书中,有一个使用
旧样式类的示例演示了如何以经典解析顺序解析方法,以及该方法
与新解析顺序有何不同。
我通过以新样式重写示例来尝试了相同的示例,但是结果与旧样式类所获得的结果没有什么不同。我用于运行示例的python版本是2.5.2。下面是示例:
class Base1(object):
def amethod(self): print "Base1"
class Base2(Base1):
pass
class Base3(object):
def amethod(self): print "Base3"
class Derived(Base2,Base3):
pass
instance = Derived()
instance.amethod()
print Derived.__mro__
该调用可以instance.amethod()
打印Base1
,但是根据我对MRO的理解,带有新的类样式,输出应该是Base3
。呼叫Derived.__mro__
打印:
(<class '__main__.Derived'>, <class '__main__.Base2'>, <class '__main__.Base1'>, <class '__main__.Base3'>, <type 'object'>)
我不确定我对新样式类的MRO的理解是否正确,还是我在做一个愚蠢的错误,无法检测到。请帮助我更好地了解MRO。
回答 0
在“天真”的深度优先方法中,同一祖先类出现多次时,旧类与新类的解析顺序之间的关键区别就出现了:例如,考虑“钻石继承”情况:
>>> class A: x = 'a'
...
>>> class B(A): pass
...
>>> class C(A): x = 'c'
...
>>> class D(B, C): pass
...
>>> D.x
'a'
在这里,是传统样式,解析顺序为D-B-A-C-A:因此,在查找Dx时,A是解析顺序中解决它的第一个基数,从而将定义隐藏在C中。
>>> class A(object): x = 'a'
...
>>> class B(A): pass
...
>>> class C(A): x = 'c'
...
>>> class D(B, C): pass
...
>>> D.x
'c'
>>>
在这里,新样式,顺序为:
>>> D.__mro__
(<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>,
<class '__main__.A'>, <type 'object'>)
与A
被迫来到分辨率顺序只有一次,毕竟它的子类,从而使覆盖(即尺寸材料的的覆盖x
)实际上有效地工作。
这是应避免使用旧式类的原因之一:“菱形”模式的多重继承对它们而言并不明智,而对新式则可行。
回答 1
实际上,Python的方法解析顺序比仅了解菱形图案还要复杂。要真正理解它,请看一下C3线性化。我发现在扩展方法以跟踪顺序时使用打印语句确实很有帮助。例如,您认为此模式的输出是什么?(注意:“ X”假定是两个相交的边,而不是节点,并且^表示调用super()的方法。)
class G():
def m(self):
print("G")
class F(G):
def m(self):
print("F")
super().m()
class E(G):
def m(self):
print("E")
super().m()
class D(G):
def m(self):
print("D")
super().m()
class C(E):
def m(self):
print("C")
super().m()
class B(D, E, F):
def m(self):
print("B")
super().m()
class A(B, C):
def m(self):
print("A")
super().m()
# A^
# / \
# B^ C^
# /| X
# D^ E^ F^
# \ | /
# G
你得到ABDCEFG了吗?
x = A()
x.m()
经过大量的尝试错误之后,我提出了对C3线性化的非正式图论解释,如下所示:(如果这是错误的,请让我知道。)
考虑以下示例:
class I(G):
def m(self):
print("I")
super().m()
class H():
def m(self):
print("H")
class G(H):
def m(self):
print("G")
super().m()
class F(H):
def m(self):
print("F")
super().m()
class E(H):
def m(self):
print("E")
super().m()
class D(F):
def m(self):
print("D")
super().m()
class C(E, F, G):
def m(self):
print("C")
super().m()
class B():
def m(self):
print("B")
super().m()
class A(B, C, D):
def m(self):
print("A")
super().m()
# Algorithm:
# 1. Build an inheritance graph such that the children point at the parents (you'll have to imagine the arrows are there) and
# keeping the correct left to right order. (I've marked methods that call super with ^)
# A^
# / | \
# / | \
# B^ C^ D^ I^
# / | \ / /
# / | X /
# / |/ \ /
# E^ F^ G^
# \ | /
# \ | /
# H
# (In this example, A is a child of B, so imagine an edge going FROM A TO B)
# 2. Remove all classes that aren't eventually inherited by A
# A^
# / | \
# / | \
# B^ C^ D^
# / | \ /
# / | X
# / |/ \
# E^ F^ G^
# \ | /
# \ | /
# H
# 3. For each level of the graph from bottom to top
# For each node in the level from right to left
# Remove all of the edges coming into the node except for the right-most one
# Remove all of the edges going out of the node except for the left-most one
# Level {H}
#
# A^
# / | \
# / | \
# B^ C^ D^
# / | \ /
# / | X
# / |/ \
# E^ F^ G^
# |
# |
# H
# Level {G F E}
#
# A^
# / | \
# / | \
# B^ C^ D^
# | \ /
# | X
# | | \
# E^F^ G^
# |
# |
# H
# Level {D C B}
#
# A^
# /| \
# / | \
# B^ C^ D^
# | |
# | |
# | |
# E^ F^ G^
# |
# |
# H
# Level {A}
#
# A^
# |
# |
# B^ C^ D^
# | |
# | |
# | |
# E^ F^ G^
# |
# |
# H
# The resolution order can now be determined by reading from top to bottom, left to right. A B C E D F G H
x = A()
x.m()
回答 2
您得到的结果是正确的。尝试更改Base3
to的基类,Base1
并与经典类的相同层次结构进行比较:
class Base1(object):
def amethod(self): print "Base1"
class Base2(Base1):
pass
class Base3(Base1):
def amethod(self): print "Base3"
class Derived(Base2,Base3):
pass
instance = Derived()
instance.amethod()
class Base1:
def amethod(self): print "Base1"
class Base2(Base1):
pass
class Base3(Base1):
def amethod(self): print "Base3"
class Derived(Base2,Base3):
pass
instance = Derived()
instance.amethod()
现在它输出:
Base3
Base1
阅读此说明以获取更多信息。
回答 3
您会看到这种现象,因为方法解析是深度优先的,而不是广度优先的。Dervied的继承看起来像
Base2 -> Base1
/
Derived - Base3
所以 instance.amethod()
- 检查Base2,找不到方法。
- 确认Base2已从Base1继承,并检查Base1。Base1有一个
amethod
,因此被调用。
这反映在中Derived.__mro__
。Derived.__mro__
找到要查找的方法时,只需简单地迭代并停止。