问题:是否有用于字符串自然排序的内置函数?
使用Python 3.x,我有一个要对其执行自然字母排序的字符串列表。
自然排序: Windows中文件的排序顺序。
例如,以下列表是自然排序的(我想要的):
['elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'Elm12', 'elm13']
这是上面列表的“排序”版本(我所拥有的):
['Elm11', 'Elm12', 'Elm2', 'elm0', 'elm1', 'elm10', 'elm13', 'elm9']
我正在寻找一种类似于第一个的排序功能。
回答 0
在PyPI上有一个名为natsort的第三方库(完整披露,我是软件包的作者)。对于您的情况,可以执行以下任一操作:
>>> from natsort import natsorted, ns
>>> x = ['Elm11', 'Elm12', 'Elm2', 'elm0', 'elm1', 'elm10', 'elm13', 'elm9']
>>> natsorted(x, key=lambda y: y.lower())
['elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'Elm12', 'elm13']
>>> natsorted(x, alg=ns.IGNORECASE) # or alg=ns.IC
['elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'Elm12', 'elm13']
您应该注意,它natsort
使用通用算法,因此它几乎可以处理您向其抛出的任何输入。如果您想了解为什么选择一个库而不是滚动自己的函数的更多详细信息,请查阅natsort
文档的“ 如何工作”页面,尤其是“ 到处都是特殊情况”!部分。
如果您需要排序键而不是排序功能,请使用以下公式之一。
>>> from natsort import natsort_keygen, ns
>>> l1 = ['elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'Elm12', 'elm13']
>>> l2 = l1[:]
>>> natsort_key1 = natsort_keygen(key=lambda y: y.lower())
>>> l1.sort(key=natsort_key1)
>>> l1
['elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'Elm12', 'elm13']
>>> natsort_key2 = natsort_keygen(alg=ns.IGNORECASE)
>>> l2.sort(key=natsort_key2)
>>> l2
['elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'Elm12', 'elm13']
回答 1
试试这个:
import re
def natural_sort(l):
convert = lambda text: int(text) if text.isdigit() else text.lower()
alphanum_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key) ]
return sorted(l, key = alphanum_key)
输出:
['elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'Elm12', 'elm13']
从此处改编的代码:为人类分类:自然排序顺序。
回答 2
这是Mark Byer答案的更多Python版本:
import re
def natural_sort_key(s, _nsre=re.compile('([0-9]+)')):
return [int(text) if text.isdigit() else text.lower()
for text in _nsre.split(s)]
现在,这个功能可以作为在使用它的任何功能,就象是一把钥匙list.sort
,sorted
,max
,等。
作为lambda:
lambda s: [int(t) if t.isdigit() else t.lower() for t in re.split('(\d+)', s)]
回答 3
我基于http://www.codinghorror.com/blog/2007/12/sorting-for-humans-natural-sort-order.html编写了一个函数,该函数增加了仍可以传递您自己的“键”参数的功能。我需要这样做,以便执行包含更复杂对象(不仅仅是字符串)的自然列表。
import re
def natural_sort(list, key=lambda s:s):
"""
Sort the list into natural alphanumeric order.
"""
def get_alphanum_key_func(key):
convert = lambda text: int(text) if text.isdigit() else text
return lambda s: [convert(c) for c in re.split('([0-9]+)', key(s))]
sort_key = get_alphanum_key_func(key)
list.sort(key=sort_key)
例如:
my_list = [{'name':'b'}, {'name':'10'}, {'name':'a'}, {'name':'1'}, {'name':'9'}]
natural_sort(my_list, key=lambda x: x['name'])
print my_list
[{'name': '1'}, {'name': '9'}, {'name': '10'}, {'name': 'a'}, {'name': 'b'}]
回答 4
data = ['elm13', 'elm9', 'elm0', 'elm1', 'Elm11', 'Elm2', 'elm10']
让我们分析数据。所有元素的数字容量为2。公共文字部分共有3个字母'elm'
。
因此,元素的最大长度为5。我们可以增加此值以确保(例如,增加到8)。
牢记这一点,我们有一个单线解决方案:
data.sort(key=lambda x: '{0:0>8}'.format(x).lower())
没有正则表达式和外部库!
print(data)
>>> ['elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'elm13']
说明:
for elm in data:
print('{0:0>8}'.format(elm).lower())
>>>
0000elm0
0000elm1
0000elm2
0000elm9
000elm10
000elm11
000elm13
回答 5
鉴于:
data=['Elm11', 'Elm12', 'Elm2', 'elm0', 'elm1', 'elm10', 'elm13', 'elm9']
类似于SergO的解决方案,没有外部库的1-liner将是:
data.sort(key=lambda x : int(x[3:]))
要么
sorted_data=sorted(data, key=lambda x : int(x[3:]))
说明:
此解决方案使用排序的关键功能来定义将用于排序的功能。因为我们知道每个数据条目都以’elm’开头,所以排序函数会将字符串中第三个字符之后的部分(即int(x [3:]))转换为整数。如果数据的数字部分位于其他位置,则函数的这一部分将必须更改。
干杯
回答 6
有很多实现,尽管有些实现已经接近,但没有一个实现能够完全抓住现代python提供的优雅。
- 使用python(3.5.1)测试
- 包括一个附加列表,以证明当数字为中间字符串时它可以工作
- 但是,没有测试,我假设如果您的列表很大,那么事先编译正则表达式会更有效
- 如果这是错误的假设,我敢肯定有人会纠正我
from re import compile, split
dre = compile(r'(\d+)')
mylist.sort(key=lambda l: [int(s) if s.isdigit() else s.lower() for s in split(dre, l)])
全码 #!/usr/bin/python3
# coding=utf-8
"""
Natural-Sort Test
"""
from re import compile, split
dre = compile(r'(\d+)')
mylist = ['elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'Elm12', 'elm13', 'elm']
mylist2 = ['e0lm', 'e1lm', 'E2lm', 'e9lm', 'e10lm', 'E12lm', 'e13lm', 'elm', 'e01lm']
mylist.sort(key=lambda l: [int(s) if s.isdigit() else s.lower() for s in split(dre, l)])
mylist2.sort(key=lambda l: [int(s) if s.isdigit() else s.lower() for s in split(dre, l)])
print(mylist)
# ['elm', 'elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'Elm12', 'elm13']
print(mylist2)
# ['e0lm', 'e1lm', 'e01lm', 'E2lm', 'e9lm', 'e10lm', 'E12lm', 'e13lm', 'elm']
使用时的注意事项
from os.path import split
- 您将需要区分进口
灵感来自
- Python文档-排序方法
- 人选:自然排序
- 人工排序
- 此职位和参考职位的贡献者/评论者
回答 7
这篇文章的价值
我的观点是提供可以普遍应用的非正则表达式解决方案。
我将创建三个函数:
find_first_digit
我从@AnuragUniyal借来的。它将查找字符串中第一个数字或非数字的位置。split_digits
这是一个生成器,用于将字符串分成数字和非数字块。yield
如果是数字,它也将是整数。natural_key
只是包装split_digits
成一个tuple
。这是我们作为一个关键的使用sorted
,max
,min
。
功能
def find_first_digit(s, non=False):
for i, x in enumerate(s):
if x.isdigit() ^ non:
return i
return -1
def split_digits(s, case=False):
non = True
while s:
i = find_first_digit(s, non)
if i == 0:
non = not non
elif i == -1:
yield int(s) if s.isdigit() else s if case else s.lower()
s = ''
else:
x, s = s[:i], s[i:]
yield int(x) if x.isdigit() else x if case else x.lower()
def natural_key(s, *args, **kwargs):
return tuple(split_digits(s, *args, **kwargs))
我们可以看到它是通用的,因为我们可以有多个数字块:
# Note that the key has lower case letters
natural_key('asl;dkfDFKJ:sdlkfjdf809lkasdjfa_543_hh')
('asl;dkfdfkj:sdlkfjdf', 809, 'lkasdjfa_', 543, '_hh')
或区分大小写:
natural_key('asl;dkfDFKJ:sdlkfjdf809lkasdjfa_543_hh', True)
('asl;dkfDFKJ:sdlkfjdf', 809, 'lkasdjfa_', 543, '_hh')
我们可以看到它以适当的顺序对OP的列表进行了排序
sorted(
['elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'Elm12', 'elm13'],
key=natural_key
)
['elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'Elm12', 'elm13']
但是它也可以处理更复杂的列表:
sorted(
['f_1', 'e_1', 'a_2', 'g_0', 'd_0_12:2', 'd_0_1_:2'],
key=natural_key
)
['a_2', 'd_0_1_:2', 'd_0_12:2', 'e_1', 'f_1', 'g_0']
我的正则表达式将是
def int_maybe(x):
return int(x) if str(x).isdigit() else x
def split_digits_re(s, case=False):
parts = re.findall('\d+|\D+', s)
if not case:
return map(int_maybe, (x.lower() for x in parts))
else:
return map(int_maybe, parts)
def natural_key_re(s, *args, **kwargs):
return tuple(split_digits_re(s, *args, **kwargs))
回答 8
一种选择是使用扩展形式http://wiki.answers.com/Q/What_does_expanded_form_mean将字符串转换为元组并替换数字
这样,a90将变为(“ a”,90,0),而a1将变为(“ a”,1)
下面是一些示例代码(由于它从数字中删除前导0的方式,因此效率不高)
alist=["something1",
"something12",
"something17",
"something2",
"something25and_then_33",
"something25and_then_34",
"something29",
"beta1.1",
"beta2.3.0",
"beta2.33.1",
"a001",
"a2",
"z002",
"z1"]
def key(k):
nums=set(list("0123456789"))
chars=set(list(k))
chars=chars-nums
for i in range(len(k)):
for c in chars:
k=k.replace(c+"0",c)
l=list(k)
base=10
j=0
for i in range(len(l)-1,-1,-1):
try:
l[i]=int(l[i])*base**j
j+=1
except:
j=0
l=tuple(l)
print l
return l
print sorted(alist,key=key)
输出:
('s', 'o', 'm', 'e', 't', 'h', 'i', 'n', 'g', 1)
('s', 'o', 'm', 'e', 't', 'h', 'i', 'n', 'g', 10, 2)
('s', 'o', 'm', 'e', 't', 'h', 'i', 'n', 'g', 10, 7)
('s', 'o', 'm', 'e', 't', 'h', 'i', 'n', 'g', 2)
('s', 'o', 'm', 'e', 't', 'h', 'i', 'n', 'g', 20, 5, 'a', 'n', 'd', '_', 't', 'h', 'e', 'n', '_', 30, 3)
('s', 'o', 'm', 'e', 't', 'h', 'i', 'n', 'g', 20, 5, 'a', 'n', 'd', '_', 't', 'h', 'e', 'n', '_', 30, 4)
('s', 'o', 'm', 'e', 't', 'h', 'i', 'n', 'g', 20, 9)
('b', 'e', 't', 'a', 1, '.', 1)
('b', 'e', 't', 'a', 2, '.', 3, '.')
('b', 'e', 't', 'a', 2, '.', 30, 3, '.', 1)
('a', 1)
('a', 2)
('z', 2)
('z', 1)
['a001', 'a2', 'beta1.1', 'beta2.3.0', 'beta2.33.1', 'something1', 'something2', 'something12', 'something17', 'something25and_then_33', 'something25and_then_34', 'something29', 'z1', 'z002']
回答 9
根据此处的答案,我编写了一个natural_sorted
行为类似于内置函数的函数sorted
:
# Copyright (C) 2018, Benjamin Drung <bdrung@posteo.de>
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
import re
def natural_sorted(iterable, key=None, reverse=False):
"""Return a new naturally sorted list from the items in *iterable*.
The returned list is in natural sort order. The string is ordered
lexicographically (using the Unicode code point number to order individual
characters), except that multi-digit numbers are ordered as a single
character.
Has two optional arguments which must be specified as keyword arguments.
*key* specifies a function of one argument that is used to extract a
comparison key from each list element: ``key=str.lower``. The default value
is ``None`` (compare the elements directly).
*reverse* is a boolean value. If set to ``True``, then the list elements are
sorted as if each comparison were reversed.
The :func:`natural_sorted` function is guaranteed to be stable. A sort is
stable if it guarantees not to change the relative order of elements that
compare equal --- this is helpful for sorting in multiple passes (for
example, sort by department, then by salary grade).
"""
prog = re.compile(r"(\d+)")
def alphanum_key(element):
"""Split given key in list of strings and digits"""
return [int(c) if c.isdigit() else c for c in prog.split(key(element)
if key else element)]
return sorted(iterable, key=alphanum_key, reverse=reverse)
源代码也可以在我的GitHub代码段存储库中找到:https: //github.com/bdrung/snippets/blob/master/natural_sorted.py
回答 10
上面的答案对于显示的特定示例很好,但是对于更自然的自然排序问题却错过了几个有用的案例。我只是被其中一种情况所困扰,因此创建了一个更彻底的解决方案:
def natural_sort_key(string_or_number):
"""
by Scott S. Lawton <scott@ProductArchitect.com> 2014-12-11; public domain and/or CC0 license
handles cases where simple 'int' approach fails, e.g.
['0.501', '0.55'] floating point with different number of significant digits
[0.01, 0.1, 1] already numeric so regex and other string functions won't work (and aren't required)
['elm1', 'Elm2'] ASCII vs. letters (not case sensitive)
"""
def try_float(astring):
try:
return float(astring)
except:
return astring
if isinstance(string_or_number, basestring):
string_or_number = string_or_number.lower()
if len(re.findall('[.]\d', string_or_number)) <= 1:
# assume a floating point value, e.g. to correctly sort ['0.501', '0.55']
# '.' for decimal is locale-specific, e.g. correct for the Anglosphere and Asia but not continental Europe
return [try_float(s) for s in re.split(r'([\d.]+)', string_or_number)]
else:
# assume distinct fields, e.g. IP address, phone number with '.', etc.
# caveat: might want to first split by whitespace
# TBD: for unicode, replace isdigit with isdecimal
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_or_number)]
else:
# consider: add code to recurse for lists/tuples and perhaps other iterables
return string_or_number
测试代码和一些链接(StackOverflow的打开和关闭)在这里:http : //productarchitect.com/code/better-natural-sort.py
欢迎反馈。这并不是一个确定的解决方案。只是前进了一步。
回答 11
最有可能functools.cmp_to_key()
与python sort的底层实现紧密相关。此外,cmp参数是旧式的。现代方法是将输入项转换为支持所需的丰富比较操作的对象。
在CPython 2.x中,即使尚未实现各自的丰富比较运算符,也可以对不同类型的对象进行排序。在CPython 3.x下,不同类型的对象必须显式支持比较。请参阅Python如何比较string和int?链接到官方文档。大多数答案取决于这种隐式排序。切换到Python 3.x将需要一种新类型来实现和统一数字和字符串之间的比较。
Python 2.7.12 (default, Sep 29 2016, 13:30:34)
>>> (0,"foo") < ("foo",0)
True
Python 3.5.2 (default, Oct 14 2016, 12:54:53)
>>> (0,"foo") < ("foo",0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unorderable types: int() < str()
有三种不同的方法。第一种使用嵌套类来利用Python的Iterable
比较算法。第二个将嵌套展开为单个类。第三类放弃了子类化str
,而是专注于性能。都是定时的;第二个速度快两倍,而第三个速度快六倍。子类化str
不是必需的,并且一开始可能不是一个好主意,但是确实带来了一些便利。
复制排序字符以强制按大小写排序,并交换大小写以强制小写字母优先排序;这是“自然排序”的典型定义。我无法决定分组的类型;有些人可能更喜欢以下内容,这也带来了显着的性能优势:
d = lambda s: s.lower()+s.swapcase()
如果使用了比较运算符,则将它们设置为,object
因此不会被忽略functools.total_ordering
。
import functools
import itertools
@functools.total_ordering
class NaturalStringA(str):
def __repr__(self):
return "{}({})".format\
( type(self).__name__
, super().__repr__()
)
d = lambda c, s: [ c.NaturalStringPart("".join(v))
for k,v in
itertools.groupby(s, c.isdigit)
]
d = classmethod(d)
@functools.total_ordering
class NaturalStringPart(str):
d = lambda s: "".join(c.lower()+c.swapcase() for c in s)
d = staticmethod(d)
def __lt__(self, other):
if not isinstance(self, type(other)):
return NotImplemented
try:
return int(self) < int(other)
except ValueError:
if self.isdigit():
return True
elif other.isdigit():
return False
else:
return self.d(self) < self.d(other)
def __eq__(self, other):
if not isinstance(self, type(other)):
return NotImplemented
try:
return int(self) == int(other)
except ValueError:
if self.isdigit() or other.isdigit():
return False
else:
return self.d(self) == self.d(other)
__le__ = object.__le__
__ne__ = object.__ne__
__gt__ = object.__gt__
__ge__ = object.__ge__
def __lt__(self, other):
return self.d(self) < self.d(other)
def __eq__(self, other):
return self.d(self) == self.d(other)
__le__ = object.__le__
__ne__ = object.__ne__
__gt__ = object.__gt__
__ge__ = object.__ge__
import functools
import itertools
@functools.total_ordering
class NaturalStringB(str):
def __repr__(self):
return "{}({})".format\
( type(self).__name__
, super().__repr__()
)
d = lambda s: "".join(c.lower()+c.swapcase() for c in s)
d = staticmethod(d)
def __lt__(self, other):
if not isinstance(self, type(other)):
return NotImplemented
groups = map(lambda i: itertools.groupby(i, type(self).isdigit), (self, other))
zipped = itertools.zip_longest(*groups)
for s,o in zipped:
if s is None:
return True
if o is None:
return False
s_k, s_v = s[0], "".join(s[1])
o_k, o_v = o[0], "".join(o[1])
if s_k and o_k:
s_v, o_v = int(s_v), int(o_v)
if s_v == o_v:
continue
return s_v < o_v
elif s_k:
return True
elif o_k:
return False
else:
s_v, o_v = self.d(s_v), self.d(o_v)
if s_v == o_v:
continue
return s_v < o_v
return False
def __eq__(self, other):
if not isinstance(self, type(other)):
return NotImplemented
groups = map(lambda i: itertools.groupby(i, type(self).isdigit), (self, other))
zipped = itertools.zip_longest(*groups)
for s,o in zipped:
if s is None or o is None:
return False
s_k, s_v = s[0], "".join(s[1])
o_k, o_v = o[0], "".join(o[1])
if s_k and o_k:
s_v, o_v = int(s_v), int(o_v)
if s_v == o_v:
continue
return False
elif s_k or o_k:
return False
else:
s_v, o_v = self.d(s_v), self.d(o_v)
if s_v == o_v:
continue
return False
return True
__le__ = object.__le__
__ne__ = object.__ne__
__gt__ = object.__gt__
__ge__ = object.__ge__
import functools
import itertools
import enum
class OrderingType(enum.Enum):
PerWordSwapCase = lambda s: s.lower()+s.swapcase()
PerCharacterSwapCase = lambda s: "".join(c.lower()+c.swapcase() for c in s)
class NaturalOrdering:
@classmethod
def by(cls, ordering):
def wrapper(string):
return cls(string, ordering)
return wrapper
def __init__(self, string, ordering=OrderingType.PerCharacterSwapCase):
self.string = string
self.groups = [ (k,int("".join(v)))
if k else
(k,ordering("".join(v)))
for k,v in
itertools.groupby(string, str.isdigit)
]
def __repr__(self):
return "{}({})".format\
( type(self).__name__
, self.string
)
def __lesser(self, other, default):
if not isinstance(self, type(other)):
return NotImplemented
for s,o in itertools.zip_longest(self.groups, other.groups):
if s is None:
return True
if o is None:
return False
s_k, s_v = s
o_k, o_v = o
if s_k and o_k:
if s_v == o_v:
continue
return s_v < o_v
elif s_k:
return True
elif o_k:
return False
else:
if s_v == o_v:
continue
return s_v < o_v
return default
def __lt__(self, other):
return self.__lesser(other, default=False)
def __le__(self, other):
return self.__lesser(other, default=True)
def __eq__(self, other):
if not isinstance(self, type(other)):
return NotImplemented
for s,o in itertools.zip_longest(self.groups, other.groups):
if s is None or o is None:
return False
s_k, s_v = s
o_k, o_v = o
if s_k and o_k:
if s_v == o_v:
continue
return False
elif s_k or o_k:
return False
else:
if s_v == o_v:
continue
return False
return True
# functools.total_ordering doesn't create single-call wrappers if both
# __le__ and __lt__ exist, so do it manually.
def __gt__(self, other):
op_result = self.__le__(other)
if op_result is NotImplemented:
return op_result
return not op_result
def __ge__(self, other):
op_result = self.__lt__(other)
if op_result is NotImplemented:
return op_result
return not op_result
# __ne__ is the only implied ordering relationship, it automatically
# delegates to __eq__
>>> import natsort
>>> import timeit
>>> l1 = ['Apple', 'corn', 'apPlE', 'arbour', 'Corn', 'Banana', 'apple', 'banana']
>>> l2 = list(map(str, range(30)))
>>> l3 = ["{} {}".format(x,y) for x in l1 for y in l2]
>>> print(timeit.timeit('sorted(l3+["0"], key=NaturalStringA)', number=10000, globals=globals()))
362.4729259099986
>>> print(timeit.timeit('sorted(l3+["0"], key=NaturalStringB)', number=10000, globals=globals()))
189.7340817489967
>>> print(timeit.timeit('sorted(l3+["0"], key=NaturalOrdering.by(OrderingType.PerCharacterSwapCase))', number=10000, globals=globals()))
69.34636392899847
>>> print(timeit.timeit('natsort.natsorted(l3+["0"], alg=natsort.ns.GROUPLETTERS | natsort.ns.LOWERCASEFIRST)', number=10000, globals=globals()))
98.2531585780016
自然排序既复杂又模糊地定义为问题。不要忘记unicodedata.normalize(...)
事先运行,并考虑使用str.casefold()
而不是str.lower()
。我可能没有考虑过细微的编码问题。因此,我暂时推荐natsort库。我快速浏览了github仓库;代码维护一直很出色。
我见过的所有算法都取决于技巧,例如复制和降低字符以及交换大小写。虽然这使运行时间加倍,但是另一种方法将要求对输入字符集进行自然排序。我认为这不是unicode规范的一部分,并且由于unicode位数比得多[0-9]
,因此创建这种排序同样令人生畏。如果要进行区域设置比较,请locale.strxfrm
按照Python的Sorting HOW TO准备字符串。
回答 12
让我对这种需要提出自己的看法:
from typing import Tuple, Union, Optional, Generator
StrOrInt = Union[str, int]
# On Python 3.6, string concatenation is REALLY fast
# Tested myself, and this fella also tested:
# https://blog.ganssle.io/articles/2019/11/string-concat.html
def griter(s: str) -> Generator[StrOrInt, None, None]:
last_was_digit: Optional[bool] = None
cluster: str = ""
for c in s:
if last_was_digit is None:
last_was_digit = c.isdigit()
cluster += c
continue
if c.isdigit() != last_was_digit:
if last_was_digit:
yield int(cluster)
else:
yield cluster
last_was_digit = c.isdigit()
cluster = ""
cluster += c
if last_was_digit:
yield int(cluster)
else:
yield cluster
return
def grouper(s: str) -> Tuple[StrOrInt, ...]:
return tuple(griter(s))
现在,如果我们有这样的列表:
filelist = [
'File3', 'File007', 'File3a', 'File10', 'File11', 'File1', 'File4', 'File5',
'File9', 'File8', 'File8b1', 'File8b2', 'File8b11', 'File6'
]
我们可以简单地使用key=
kwarg进行自然排序:
>>> sorted(filelist, key=grouper)
['File1', 'File3', 'File3a', 'File4', 'File5', 'File6', 'File007', 'File8',
'File8b1', 'File8b2', 'File8b11', 'File9', 'File10', 'File11']
当然,这里的缺点是,因为现在,函数将大写字母排在小写字母之前。
我将把不区分大小写的石斑鱼的实现留给读者:-)
回答 13
我建议您只使用key
关键字参数of sorted
来获得所需的列表
,例如:
to_order= [e2,E1,e5,E4,e3]
ordered= sorted(to_order, key= lambda x: x.lower())
# ordered should be [E1,e2,e3,E4,e5]
回答 14
在@Mark Byers回答之后,这是一个接受key
参数的改编,并且更符合PEP8。
def natsorted(seq, key=None):
def convert(text):
return int(text) if text.isdigit() else text
def alphanum(obj):
if key is not None:
return [convert(c) for c in re.split(r'([0-9]+)', key(obj))]
return [convert(c) for c in re.split(r'([0-9]+)', obj)]
return sorted(seq, key=alphanum)
我也做了一个要点
回答 15
Claudiu对Mark Byer答案的改进;-)
import re
def natural_sort_key(s, _re=re.compile(r'(\d+)')):
return [int(t) if i & 1 else t.lower() for i, t in enumerate(_re.split(s))]
...
my_naturally_sorted_list = sorted(my_list, key=natural_sort_key)
顺便说一句,也许不是每个人都记得函数参数默认值是在def
时间评估的
回答 16
a = ['H1', 'H100', 'H10', 'H3', 'H2', 'H6', 'H11', 'H50', 'H5', 'H99', 'H8']
b = ''
c = []
def bubble(bad_list):#bubble sort method
length = len(bad_list) - 1
sorted = False
while not sorted:
sorted = True
for i in range(length):
if bad_list[i] > bad_list[i+1]:
sorted = False
bad_list[i], bad_list[i+1] = bad_list[i+1], bad_list[i] #sort the integer list
a[i], a[i+1] = a[i+1], a[i] #sort the main list based on the integer list index value
for a_string in a: #extract the number in the string character by character
for letter in a_string:
if letter.isdigit():
#print letter
b += letter
c.append(b)
b = ''
print 'Before sorting....'
print a
c = map(int, c) #converting string list into number list
print c
bubble(c)
print 'After sorting....'
print c
print a
致谢:
回答 17
>>> import re
>>> sorted(lst, key=lambda x: int(re.findall(r'\d+$', x)[0]))
['elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'Elm12', 'elm13']