问题:有什么pythonic方式可以合并两个字典(为同时出现在两个字典中的键添加值)?

例如,我有两个字典:

Dict A: {'a': 1, 'b': 2, 'c': 3}
Dict B: {'b': 3, 'c': 4, 'd': 5}

我需要一种“结合”两个字典的pythonic方式,使得结果是:

{'a': 1, 'b': 5, 'c': 7, 'd': 5}

也就是说:如果一个键同时出现在两个字典中,则将其值相加;如果仅出现在一个字典中,则保留其值。

For example I have two dicts:

Dict A: {'a': 1, 'b': 2, 'c': 3}
Dict B: {'b': 3, 'c': 4, 'd': 5}

I need a pythonic way of ‘combining’ two dicts such that the result is:

{'a': 1, 'b': 5, 'c': 7, 'd': 5}

That is to say: if a key appears in both dicts, add their values, if it appears in only one dict, keep its value.


回答 0

用途collections.Counter

>>> from collections import Counter
>>> A = Counter({'a':1, 'b':2, 'c':3})
>>> B = Counter({'b':3, 'c':4, 'd':5})
>>> A + B
Counter({'c': 7, 'b': 5, 'd': 5, 'a': 1})

计数器基本上是的子类dict,因此您仍然可以使用该类型对它们执行其他所有操作,例如遍历其键和值。

Use collections.Counter:

>>> from collections import Counter
>>> A = Counter({'a':1, 'b':2, 'c':3})
>>> B = Counter({'b':3, 'c':4, 'd':5})
>>> A + B
Counter({'c': 7, 'b': 5, 'd': 5, 'a': 1})

Counters are basically a subclass of dict, so you can still do everything else with them you’d normally do with that type, such as iterate over their keys and values.


回答 1

一个更通用的解决方案,也适用于非数字值:

a = {'a': 'foo', 'b':'bar', 'c': 'baz'}
b = {'a': 'spam', 'c':'ham', 'x': 'blah'}

r = dict(a.items() + b.items() +
    [(k, a[k] + b[k]) for k in set(b) & set(a)])

或更通用的:

def combine_dicts(a, b, op=operator.add):
    return dict(a.items() + b.items() +
        [(k, op(a[k], b[k])) for k in set(b) & set(a)])

例如:

>>> a = {'a': 2, 'b':3, 'c':4}
>>> b = {'a': 5, 'c':6, 'x':7}

>>> import operator
>>> print combine_dicts(a, b, operator.mul)
{'a': 10, 'x': 7, 'c': 24, 'b': 3}

A more generic solution, which works for non-numeric values as well:

a = {'a': 'foo', 'b':'bar', 'c': 'baz'}
b = {'a': 'spam', 'c':'ham', 'x': 'blah'}

r = dict(a.items() + b.items() +
    [(k, a[k] + b[k]) for k in set(b) & set(a)])

or even more generic:

def combine_dicts(a, b, op=operator.add):
    return dict(a.items() + b.items() +
        [(k, op(a[k], b[k])) for k in set(b) & set(a)])

For example:

>>> a = {'a': 2, 'b':3, 'c':4}
>>> b = {'a': 5, 'c':6, 'x':7}

>>> import operator
>>> print combine_dicts(a, b, operator.mul)
{'a': 10, 'x': 7, 'c': 24, 'b': 3}

回答 2

>>> A = {'a':1, 'b':2, 'c':3}
>>> B = {'b':3, 'c':4, 'd':5}
>>> c = {x: A.get(x, 0) + B.get(x, 0) for x in set(A).union(B)}
>>> print(c)

{'a': 1, 'c': 7, 'b': 5, 'd': 5}
>>> A = {'a':1, 'b':2, 'c':3}
>>> B = {'b':3, 'c':4, 'd':5}
>>> c = {x: A.get(x, 0) + B.get(x, 0) for x in set(A).union(B)}
>>> print(c)

{'a': 1, 'c': 7, 'b': 5, 'd': 5}

回答 3

介绍: 有(可能)最好的解决方案。但是您必须了解它并记住它,有时您必须希望您的Python版本不是太旧或任何问题。

然后是最“ hacky”的解决方案。它们虽然长短,但有时难以理解,阅读和记忆。

但是,还有另一种方法可以尝试重新发明轮子。-为什么要重新发明轮子?-通常,因为这是一种非常好的学习方法(有时只是因为现有工具无法完全实现您想要的和/或您想要的方式),而如果您不知道或不了解,则是最简单的方法忘记了解决问题的理想工具。

因此,我建议Countercollections模块(至少部分地)重塑类的方向:

class MyDict(dict):
    def __add__(self, oth):
        r = self.copy()

        try:
            for key, val in oth.items():
                if key in r:
                    r[key] += val  # You can custom it here
                else:
                    r[key] = val
        except AttributeError:  # In case oth isn't a dict
            return NotImplemented  # The convention when a case isn't handled

        return r

a = MyDict({'a':1, 'b':2, 'c':3})
b = MyDict({'b':3, 'c':4, 'd':5})

print(a+b)  # Output {'a':1, 'b': 5, 'c': 7, 'd': 5}

可能会有其他方式来实现它,并且已经有工具可以做到这一点,但是可视化事物的基本工作原理总是很高兴的。

Intro: There are the (probably) best solutions. But you have to know it and remember it and sometimes you have to hope that your Python version isn’t too old or whatever the issue could be.

Then there are the most ‘hacky’ solutions. They are great and short but sometimes are hard to understand, to read and to remember.

There is, though, an alternative which is to to try to reinvent the wheel. – Why reinventing the wheel? – Generally because it’s a really good way to learn (and sometimes just because the already-existing tool doesn’t do exactly what you would like and/or the way you would like it) and the easiest way if you don’t know or don’t remember the perfect tool for your problem.

So, I propose to reinvent the wheel of the Counter class from the collections module (partially at least):

class MyDict(dict):
    def __add__(self, oth):
        r = self.copy()

        try:
            for key, val in oth.items():
                if key in r:
                    r[key] += val  # You can custom it here
                else:
                    r[key] = val
        except AttributeError:  # In case oth isn't a dict
            return NotImplemented  # The convention when a case isn't handled

        return r

a = MyDict({'a':1, 'b':2, 'c':3})
b = MyDict({'b':3, 'c':4, 'd':5})

print(a+b)  # Output {'a':1, 'b': 5, 'c': 7, 'd': 5}

There would probably others way to implement that and there are already tools to do that but it’s always nice to visualize how things would basically works.


回答 4

myDict = {}
for k in itertools.chain(A.keys(), B.keys()):
    myDict[k] = A.get(k, 0)+B.get(k, 0)
myDict = {}
for k in itertools.chain(A.keys(), B.keys()):
    myDict[k] = A.get(k, 0)+B.get(k, 0)

回答 5

一个没有额外的进口!

他们是一个称为EAFP的pythonic 标准(要求宽恕比许可容易)。下面的代码基于该python标准

# The A and B dictionaries
A = {'a': 1, 'b': 2, 'c': 3}
B = {'b': 3, 'c': 4, 'd': 5}

# The final dictionary. Will contain the final outputs.
newdict = {}

# Make sure every key of A and B get into the final dictionary 'newdict'.
newdict.update(A)
newdict.update(B)

# Iterate through each key of A.
for i in A.keys():

    # If same key exist on B, its values from A and B will add together and
    # get included in the final dictionary 'newdict'.
    try:
        addition = A[i] + B[i]
        newdict[i] = addition

    # If current key does not exist in dictionary B, it will give a KeyError,
    # catch it and continue looping.
    except KeyError:
        continue

编辑:感谢jerzyk的改进建议。

The one with no extra imports!

Their is a pythonic standard called EAFP(Easier to Ask for Forgiveness than Permission). Below code is based on that python standard.

# The A and B dictionaries
A = {'a': 1, 'b': 2, 'c': 3}
B = {'b': 3, 'c': 4, 'd': 5}

# The final dictionary. Will contain the final outputs.
newdict = {}

# Make sure every key of A and B get into the final dictionary 'newdict'.
newdict.update(A)
newdict.update(B)

# Iterate through each key of A.
for i in A.keys():

    # If same key exist on B, its values from A and B will add together and
    # get included in the final dictionary 'newdict'.
    try:
        addition = A[i] + B[i]
        newdict[i] = addition

    # If current key does not exist in dictionary B, it will give a KeyError,
    # catch it and continue looping.
    except KeyError:
        continue

EDIT: thanks to jerzyk for his improvement suggestions.


回答 6

Counter()在这种情况下,将s 绝对相加是最有效的方法,但前提是它会导致正值。这是一个示例,如您所见,在字典中c取反c的值后没有结果B

In [1]: from collections import Counter

In [2]: A = Counter({'a':1, 'b':2, 'c':3})

In [3]: B = Counter({'b':3, 'c':-4, 'd':5})

In [4]: A + B
Out[4]: Counter({'d': 5, 'b': 5, 'a': 1})

这是因为Counters最初主要用于与正整数一起表示运行计数(负计数是没有意义的)。但是为了帮助解决这些用例,python记录了最小范围和类型限制,如下所示:

  • Counter类本身是一个字典子类,对其键和值没有限制。这些值应为代表计数的数字,但您可以在值字段中存储任何内容。
  • most_common()方法仅要求值是可排序的。
  • 对于诸如的就地操作c[key] += 1,值类型仅需要支持加法和减法。因此,分数,浮点数和小数将起作用,并且支持负值。对于update()和也是如此subtract()其允许输入和输出的负序和零值。
  • 多重集方法仅设计用于具有正值的用例。输入可以为负或零,但仅创建具有正值的输出。没有类型限制,但是值类型需要支持加,减和比较。
  • elements()方法需要整数计数。它忽略零和负计数。

因此,为解决计数器加总后的问题,可以使用Counter.update以获得所需的输出。它的工作原理类似,dict.update()但增加了计数而不是取代它们。

In [24]: A.update(B)

In [25]: A
Out[25]: Counter({'d': 5, 'b': 5, 'a': 1, 'c': -1})

Definitely summing the Counter()s is the most pythonic way to go in such cases but only if it results in a positive value. Here is an example and as you can see there is no c in result after negating the c‘s value in B dictionary.

In [1]: from collections import Counter

In [2]: A = Counter({'a':1, 'b':2, 'c':3})

In [3]: B = Counter({'b':3, 'c':-4, 'd':5})

In [4]: A + B
Out[4]: Counter({'d': 5, 'b': 5, 'a': 1})

That’s because Counters were primarily designed to work with positive integers to represent running counts (negative count is meaningless). But to help with those use cases,python documents the minimum range and type restrictions as follows:

  • The Counter class itself is a dictionary subclass with no restrictions on its keys and values. The values are intended to be numbers representing counts, but you could store anything in the value field.
  • The most_common() method requires only that the values be orderable.
  • For in-place operations such as c[key] += 1, the value type need only support addition and subtraction. So fractions, floats, and decimals would work and negative values are supported. The same is also true for update() and subtract() which allow negative and zero values for both inputs and outputs.
  • The multiset methods are designed only for use cases with positive values. The inputs may be negative or zero, but only outputs with positive values are created. There are no type restrictions, but the value type needs to support addition, subtraction, and comparison.
  • The elements() method requires integer counts. It ignores zero and negative counts.

So for getting around that problem after summing your Counter you can use Counter.update in order to get the desire output. It works like dict.update() but adds counts instead of replacing them.

In [24]: A.update(B)

In [25]: A
Out[25]: Counter({'d': 5, 'b': 5, 'a': 1, 'c': -1})

回答 7

import itertools
import collections

dictA = {'a':1, 'b':2, 'c':3}
dictB = {'b':3, 'c':4, 'd':5}

new_dict = collections.defaultdict(int)
# use dict.items() instead of dict.iteritems() for Python3
for k, v in itertools.chain(dictA.iteritems(), dictB.iteritems()):
    new_dict[k] += v

print dict(new_dict)

# OUTPUT
{'a': 1, 'c': 7, 'b': 5, 'd': 5}

要么

您也可以使用@Martijn上面提到的Counter。

import itertools
import collections

dictA = {'a':1, 'b':2, 'c':3}
dictB = {'b':3, 'c':4, 'd':5}

new_dict = collections.defaultdict(int)
# use dict.items() instead of dict.iteritems() for Python3
for k, v in itertools.chain(dictA.iteritems(), dictB.iteritems()):
    new_dict[k] += v

print dict(new_dict)

# OUTPUT
{'a': 1, 'c': 7, 'b': 5, 'd': 5}

OR

Alternative you can use Counter as @Martijn has mentioned above.


回答 8

有关更通用和可扩展的方法,请检查mergedict。它用singledispatch并可以根据其类型合并值。

例:

from mergedict import MergeDict

class SumDict(MergeDict):
    @MergeDict.dispatch(int)
    def merge_int(this, other):
        return this + other

d2 = SumDict({'a': 1, 'b': 'one'})
d2.merge({'a':2, 'b': 'two'})

assert d2 == {'a': 3, 'b': 'two'}

For a more generic and extensible way check mergedict. It uses singledispatch and can merge values based on its types.

Example:

from mergedict import MergeDict

class SumDict(MergeDict):
    @MergeDict.dispatch(int)
    def merge_int(this, other):
        return this + other

d2 = SumDict({'a': 1, 'b': 'one'})
d2.merge({'a':2, 'b': 'two'})

assert d2 == {'a': 3, 'b': 'two'}

回答 9

从python 3.5开始:合并和求和

感谢@tokeinizer_fsj在评论中告诉我,我并没有完全理解问题的含义(我认为添加意味着仅添加最终在两个字典中有所不同的键,相反,我的意思是公用键值应该加起来)。因此,我在合并之前添加了该循环,以便第二个字典包含公用键的总和。最后典将是其值将在新字典中持续存在的字典,这是两者合并的结果,所以我认为问题已解决。该解决方案从python 3.5及以下版本开始有效。

a = {
    "a": 1,
    "b": 2,
    "c": 3
}

b = {
    "a": 2,
    "b": 3,
    "d": 5
}

# Python 3.5

for key in b:
    if key in a:
        b[key] = b[key] + a[key]

c = {**a, **b}
print(c)

>>> c
{'a': 3, 'b': 5, 'c': 3, 'd': 5}

可重用代码

a = {'a': 1, 'b': 2, 'c': 3}
b = {'b': 3, 'c': 4, 'd': 5}


def mergsum(a, b):
    for k in b:
        if k in a:
            b[k] = b[k] + a[k]
    c = {**a, **b}
    return c


print(mergsum(a, b))

From python 3.5: merging and summing

Thanks to @tokeinizer_fsj that told me in a comment that I didn’t get completely the meaning of the question (I thought that add meant just adding keys that eventually where different in the two dictinaries and, instead, i meant that the common key values should be summed). So I added that loop before the merging, so that the second dictionary contains the sum of the common keys. The last dictionary will be the one whose values will last in the new dictionary that is the result of the merging of the two, so I thing the problem is solved. The solution is valid from python 3.5 and following versions.

a = {
    "a": 1,
    "b": 2,
    "c": 3
}

b = {
    "a": 2,
    "b": 3,
    "d": 5
}

# Python 3.5

for key in b:
    if key in a:
        b[key] = b[key] + a[key]

c = {**a, **b}
print(c)

>>> c
{'a': 3, 'b': 5, 'c': 3, 'd': 5}

Reusable code

a = {'a': 1, 'b': 2, 'c': 3}
b = {'b': 3, 'c': 4, 'd': 5}


def mergsum(a, b):
    for k in b:
        if k in a:
            b[k] = b[k] + a[k]
    c = {**a, **b}
    return c


print(mergsum(a, b))

回答 10

此外,请注意a.update( b ),速度是2倍a + b

from collections import Counter
a = Counter({'menu': 20, 'good': 15, 'happy': 10, 'bar': 5})
b = Counter({'menu': 1, 'good': 1, 'bar': 3})

%timeit a + b;
## 100000 loops, best of 3: 8.62 µs per loop
## The slowest run took 4.04 times longer than the fastest. This could mean that an intermediate result is being cached.

%timeit a.update(b)
## 100000 loops, best of 3: 4.51 µs per loop

Additionally, please note a.update( b ) is 2x faster than a + b

from collections import Counter
a = Counter({'menu': 20, 'good': 15, 'happy': 10, 'bar': 5})
b = Counter({'menu': 1, 'good': 1, 'bar': 3})

%timeit a + b;
## 100000 loops, best of 3: 8.62 µs per loop
## The slowest run took 4.04 times longer than the fastest. This could mean that an intermediate result is being cached.

%timeit a.update(b)
## 100000 loops, best of 3: 4.51 µs per loop

回答 11

def merge_with(f, xs, ys):
    xs = a_copy_of(xs) # dict(xs), maybe generalizable?
    for (y, v) in ys.iteritems():
        xs[y] = v if y not in xs else f(xs[x], v)

merge_with((lambda x, y: x + y), A, B)

您可以轻松地对此进行概括:

def merge_dicts(f, *dicts):
    result = {}
    for d in dicts:
        for (k, v) in d.iteritems():
            result[k] = v if k not in result else f(result[k], v)

然后它可以采用任意数量的字典。

def merge_with(f, xs, ys):
    xs = a_copy_of(xs) # dict(xs), maybe generalizable?
    for (y, v) in ys.iteritems():
        xs[y] = v if y not in xs else f(xs[x], v)

merge_with((lambda x, y: x + y), A, B)

You could easily generalize this:

def merge_dicts(f, *dicts):
    result = {}
    for d in dicts:
        for (k, v) in d.iteritems():
            result[k] = v if k not in result else f(result[k], v)

Then it can take any number of dicts.


回答 12

这是合并两个+=可应用于值的字典的简单解决方案,它只需要对字典进行一次迭代

a = {'a':1, 'b':2, 'c':3}

dicts = [{'b':3, 'c':4, 'd':5},
         {'c':9, 'a':9, 'd':9}]

def merge_dicts(merged,mergedfrom):
    for k,v in mergedfrom.items():
        if k in merged:
            merged[k] += v
        else:
            merged[k] = v
    return merged

for dct in dicts:
    a = merge_dicts(a,dct)
print (a)
#{'c': 16, 'b': 5, 'd': 14, 'a': 10}

This is a simple solution for merging two dictionaries where += can be applied to the values, it has to iterate over a dictionary only once

a = {'a':1, 'b':2, 'c':3}

dicts = [{'b':3, 'c':4, 'd':5},
         {'c':9, 'a':9, 'd':9}]

def merge_dicts(merged,mergedfrom):
    for k,v in mergedfrom.items():
        if k in merged:
            merged[k] += v
        else:
            merged[k] = v
    return merged

for dct in dicts:
    a = merge_dicts(a,dct)
print (a)
#{'c': 16, 'b': 5, 'd': 14, 'a': 10}

回答 13

此解决方案易于使用,它用作普通词典,但是您可以使用sum函数。

class SumDict(dict):
    def __add__(self, y):
        return {x: self.get(x, 0) + y.get(x, 0) for x in set(self).union(y)}

A = SumDict({'a': 1, 'c': 2})
B = SumDict({'b': 3, 'c': 4})  # Also works: B = {'b': 3, 'c': 4}
print(A + B)  # OUTPUT {'a': 1, 'b': 3, 'c': 6}

This solution is easy to use, it is used as a normal dictionary, but you can use the sum function.

class SumDict(dict):
    def __add__(self, y):
        return {x: self.get(x, 0) + y.get(x, 0) for x in set(self).union(y)}

A = SumDict({'a': 1, 'c': 2})
B = SumDict({'b': 3, 'c': 4})  # Also works: B = {'b': 3, 'c': 4}
print(A + B)  # OUTPUT {'a': 1, 'b': 3, 'c': 6}

回答 14

关于什么:

def dict_merge_and_sum( d1, d2 ):
    ret = d1
    ret.update({ k:v + d2[k] for k,v in d1.items() if k in d2 })
    ret.update({ k:v for k,v in d2.items() if k not in d1 })
    return ret

A = {'a': 1, 'b': 2, 'c': 3}
B = {'b': 3, 'c': 4, 'd': 5}

print( dict_merge_and_sum( A, B ) )

输出:

{'d': 5, 'a': 1, 'c': 7, 'b': 5}

What about:

def dict_merge_and_sum( d1, d2 ):
    ret = d1
    ret.update({ k:v + d2[k] for k,v in d1.items() if k in d2 })
    ret.update({ k:v for k,v in d2.items() if k not in d1 })
    return ret

A = {'a': 1, 'b': 2, 'c': 3}
B = {'b': 3, 'c': 4, 'd': 5}

print( dict_merge_and_sum( A, B ) )

Output:

{'d': 5, 'a': 1, 'c': 7, 'b': 5}

回答 15

上述解决方案非常适合Counters 较少的情况。如果您有很多清单,那么这样会更好:

from collections import Counter

A = Counter({'a':1, 'b':2, 'c':3})
B = Counter({'b':3, 'c':4, 'd':5}) 
C = Counter({'a': 5, 'e':3})
list_of_counts = [A, B, C]

total = sum(list_of_counts, Counter())

print(total)
# Counter({'c': 7, 'a': 6, 'b': 5, 'd': 5, 'e': 3})

上面的解决方案本质上Counter是通过以下方式将s 相加:

total = Counter()
for count in list_of_counts:
    total += count
print(total)
# Counter({'c': 7, 'a': 6, 'b': 5, 'd': 5, 'e': 3})

这做同样的事情,但我认为它始终有助于了解其在下面的有效工作。

The above solutions are great for the scenario where you have a small number of Counters. If you have a big list of them though, something like this is much nicer:

from collections import Counter

A = Counter({'a':1, 'b':2, 'c':3})
B = Counter({'b':3, 'c':4, 'd':5}) 
C = Counter({'a': 5, 'e':3})
list_of_counts = [A, B, C]

total = sum(list_of_counts, Counter())

print(total)
# Counter({'c': 7, 'a': 6, 'b': 5, 'd': 5, 'e': 3})

The above solution is essentially summing the Counters by:

total = Counter()
for count in list_of_counts:
    total += count
print(total)
# Counter({'c': 7, 'a': 6, 'b': 5, 'd': 5, 'e': 3})

This does the same thing but I think it always helps to see what it is effectively doing underneath.


回答 16

在没有任何其他模块或库的情况下,在一行中合并三个字典a,b,c

如果我们有三个决定

a = {"a":9}
b = {"b":7}
c = {'b': 2, 'd': 90}

用一行合并所有内容,并使用返回一个dict对象

c = dict(a.items() + b.items() + c.items())

归来

{'a': 9, 'b': 2, 'd': 90}

Merging three dicts a,b,c in a single line without any other modules or libs

If we have the three dicts

a = {"a":9}
b = {"b":7}
c = {'b': 2, 'd': 90}

Merge all with a single line and return a dict object using

c = dict(a.items() + b.items() + c.items())

Returning

{'a': 9, 'b': 2, 'd': 90}

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。