问题:查找列表模式

给定项目列表,回想一下该模式列表是最常出现的项目。

我想知道如何创建一个函数,该函数可以找到列表的模式,但是如果列表不具有模式(例如,列表中的所有项目仅出现一次),则会显示一条消息。我想使此功能不导入任何功能。我正在尝试从头开始实现自己的功能。

Given a list of items, recall that the mode of the list is the item that occurs most often.

I would like to know how to create a function that can find the mode of a list but that displays a message if the list does not have a mode (e.g., all the items in the list only appear once). I want to make this function without importing any functions. I’m trying to make my own function from scratch.


回答 0

您可以使用max功能和键。看看使用’key’和lambda表达式的python max函数

max(set(lst), key=lst.count)

You can use the max function and a key. Have a look at python max function using ‘key’ and lambda expression.

max(set(lst), key=lst.count)

回答 1

您可以使用具有-esque函数软件包中提供的mode

from collections import Counter
data = Counter(your_list_in_here)
data.most_common()   # Returns all unique items and their counts
data.most_common(1)  # Returns the highest occurring item

注意:Counter在python 2.7中是新的,并且在早期版本中不可用。

You can use the supplied in the package which has a mode-esque function

from collections import Counter
data = Counter(your_list_in_here)
data.most_common()   # Returns all unique items and their counts
data.most_common(1)  # Returns the highest occurring item

Note: Counter is new in python 2.7 and is not available in earlier versions.


回答 2

Python 3.4包含了method statistics.mode,所以它很简单:

>>> from statistics import mode
>>> mode([1, 1, 2, 3, 3, 3, 3, 4])
 3

列表中可以有任何类型的元素,而不仅仅是数字:

>>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
 'red'

Python 3.4 includes the method statistics.mode, so it is straightforward:

>>> from statistics import mode
>>> mode([1, 1, 2, 3, 3, 3, 3, 4])
 3

You can have any type of elements in the list, not just numeric:

>>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
 'red'

回答 3

从一些统计软件(即SciPyMATLAB)中获取一个叶子,它们只会返回最小的最常见值,因此,如果两个值相等地频繁出现,则会返回其中的最小值。希望有一个例子可以帮助:

>>> from scipy.stats import mode

>>> mode([1, 2, 3, 4, 5])
(array([ 1.]), array([ 1.]))

>>> mode([1, 2, 2, 3, 3, 4, 5])
(array([ 2.]), array([ 2.]))

>>> mode([1, 2, 2, -3, -3, 4, 5])
(array([-3.]), array([ 2.]))

有什么原因导致您无法遵守该约定?

Taking a leaf from some statistics software, namely SciPy and MATLAB, these just return the smallest most common value, so if two values occur equally often, the smallest of these are returned. Hopefully an example will help:

>>> from scipy.stats import mode

>>> mode([1, 2, 3, 4, 5])
(array([ 1.]), array([ 1.]))

>>> mode([1, 2, 2, 3, 3, 4, 5])
(array([ 2.]), array([ 2.]))

>>> mode([1, 2, 2, -3, -3, 4, 5])
(array([-3.]), array([ 2.]))

Is there any reason why you can ‘t follow this convention?


回答 4

有许多简单的方法可以在Python中找到列表模式,例如:

import statistics
statistics.mode([1,2,3,3])
>>> 3

或者,您可以通过计数找到最大值

max(array, key = array.count)

这两种方法的问题在于它们不能在多种模式下使用。第一个返回错误,而第二个返回第一个模式。

为了找到集合的模式,您可以使用以下功能:

def mode(array):
    most = max(list(map(array.count, array)))
    return list(set(filter(lambda x: array.count(x) == most, array)))

There are many simple ways to find the mode of a list in Python such as:

import statistics
statistics.mode([1,2,3,3])
>>> 3

Or, you could find the max by its count

max(array, key = array.count)

The problem with those two methods are that they don’t work with multiple modes. The first returns an error, while the second returns the first mode.

In order to find the modes of a set, you could use this function:

def mode(array):
    most = max(list(map(array.count, array)))
    return list(set(filter(lambda x: array.count(x) == most, array)))

回答 5

扩展在列表为空时不起作用的社区答案,这是mode的有效代码:

def mode(arr):
        if arr==[]:
            return None
        else:
            return max(set(arr), key=arr.count)

Extending the Community answer that will not work when the list is empty, here is working code for mode:

def mode(arr):
        if arr==[]:
            return None
        else:
            return max(set(arr), key=arr.count)

回答 6

如果您对最小,最大或所有模式都感兴趣:

def get_small_mode(numbers, out_mode):
    counts = {k:numbers.count(k) for k in set(numbers)}
    modes = sorted(dict(filter(lambda x: x[1] == max(counts.values()), counts.items())).keys())
    if out_mode=='smallest':
        return modes[0]
    elif out_mode=='largest':
        return modes[-1]
    else:
        return modes

In case you are interested in either the smallest, largest or all modes:

def get_small_mode(numbers, out_mode):
    counts = {k:numbers.count(k) for k in set(numbers)}
    modes = sorted(dict(filter(lambda x: x[1] == max(counts.values()), counts.items())).keys())
    if out_mode=='smallest':
        return modes[0]
    elif out_mode=='largest':
        return modes[-1]
    else:
        return modes

回答 7

我写了这个方便的功能来找到模式。

def mode(nums):
    corresponding={}
    occurances=[]
    for i in nums:
            count = nums.count(i)
            corresponding.update({i:count})

    for i in corresponding:
            freq=corresponding[i]
            occurances.append(freq)

    maxFreq=max(occurances)

    keys=corresponding.keys()
    values=corresponding.values()

    index_v = values.index(maxFreq)
    global mode
    mode = keys[index_v]
    return mode

I wrote up this handy function to find the mode.

def mode(nums):
    corresponding={}
    occurances=[]
    for i in nums:
            count = nums.count(i)
            corresponding.update({i:count})

    for i in corresponding:
            freq=corresponding[i]
            occurances.append(freq)

    maxFreq=max(occurances)

    keys=corresponding.keys()
    values=corresponding.values()

    index_v = values.index(maxFreq)
    global mode
    mode = keys[index_v]
    return mode

回答 8

简短,但有点丑陋:

def mode(arr) :
    m = max([arr.count(a) for a in arr])
    return [x for x in arr if arr.count(x) == m][0] if m>1 else None

使用字典,稍微不那么难看:

def mode(arr) :
    f = {}
    for a in arr : f[a] = f.get(a,0)+1
    m = max(f.values())
    t = [(x,f[x]) for x in f if f[x]==m]
    return m > 1 t[0][0] else None

Short, but somehow ugly:

def mode(arr) :
    m = max([arr.count(a) for a in arr])
    return [x for x in arr if arr.count(x) == m][0] if m>1 else None

Using a dictionary, slightly less ugly:

def mode(arr) :
    f = {}
    for a in arr : f[a] = f.get(a,0)+1
    m = max(f.values())
    t = [(x,f[x]) for x in f if f[x]==m]
    return m > 1 t[0][0] else None

回答 9

稍长一些,但是可以有多种模式,并且可以获取具有最多计数或数据类型混合的字符串。

def getmode(inplist):
    '''with list of items as input, returns mode
    '''
    dictofcounts = {}
    listofcounts = []
    for i in inplist:
        countofi = inplist.count(i) # count items for each item in list
        listofcounts.append(countofi) # add counts to list
        dictofcounts[i]=countofi # add counts and item in dict to get later
    maxcount = max(listofcounts) # get max count of items
    if maxcount ==1:
        print "There is no mode for this dataset, values occur only once"
    else:
        modelist = [] # if more than one mode, add to list to print out
        for key, item in dictofcounts.iteritems():
            if item ==maxcount: # get item from original list with most counts
                modelist.append(str(key))
        print "The mode(s) are:",' and '.join(modelist)
        return modelist 

A little longer, but can have multiple modes and can get string with most counts or mix of datatypes.

def getmode(inplist):
    '''with list of items as input, returns mode
    '''
    dictofcounts = {}
    listofcounts = []
    for i in inplist:
        countofi = inplist.count(i) # count items for each item in list
        listofcounts.append(countofi) # add counts to list
        dictofcounts[i]=countofi # add counts and item in dict to get later
    maxcount = max(listofcounts) # get max count of items
    if maxcount ==1:
        print "There is no mode for this dataset, values occur only once"
    else:
        modelist = [] # if more than one mode, add to list to print out
        for key, item in dictofcounts.iteritems():
            if item ==maxcount: # get item from original list with most counts
                modelist.append(str(key))
        print "The mode(s) are:",' and '.join(modelist)
        return modelist 

回答 10

要使一个数字成为a mode,它必须比列表中至少一个其他数字出现更多次,并且不能是列表中唯一的数字。因此,我重构了@mathwizurd的答案(使用该difference方法),如下所示:

def mode(array):
    '''
    returns a set containing valid modes
    returns a message if no valid mode exists
      - when all numbers occur the same number of times
      - when only one number occurs in the list 
      - when no number occurs in the list 
    '''
    most = max(map(array.count, array)) if array else None
    mset = set(filter(lambda x: array.count(x) == most, array))
    return mset if set(array) - mset else "list does not have a mode!" 

这些测试成功通过:

mode([]) == None 
mode([1]) == None
mode([1, 1]) == None 
mode([1, 1, 2, 2]) == None 

For a number to be a mode, it must occur more number of times than at least one other number in the list, and it must not be the only number in the list. So, I refactored @mathwizurd’s answer (to use the difference method) as follows:

def mode(array):
    '''
    returns a set containing valid modes
    returns a message if no valid mode exists
      - when all numbers occur the same number of times
      - when only one number occurs in the list 
      - when no number occurs in the list 
    '''
    most = max(map(array.count, array)) if array else None
    mset = set(filter(lambda x: array.count(x) == most, array))
    return mset if set(array) - mset else "list does not have a mode!" 

These tests pass successfully:

mode([]) == None 
mode([1]) == None
mode([1, 1]) == None 
mode([1, 1, 2, 2]) == None 

回答 11

为什么不只是

def print_mode (thelist):
  counts = {}
  for item in thelist:
    counts [item] = counts.get (item, 0) + 1
  maxcount = 0
  maxitem = None
  for k, v in counts.items ():
    if v > maxcount:
      maxitem = k
      maxcount = v
  if maxcount == 1:
    print "All values only appear once"
  elif counts.values().count (maxcount) > 1:
    print "List has multiple modes"
  else:
    print "Mode of list:", maxitem

它没有应该进行的一些错误检查,但是它将在不导入任何功能的情况下找到模式,并且如果所有值仅出现一次,则将打印一条消息。它还不清楚是否有多个项目共享相同的最大计数。

Why not just

def print_mode (thelist):
  counts = {}
  for item in thelist:
    counts [item] = counts.get (item, 0) + 1
  maxcount = 0
  maxitem = None
  for k, v in counts.items ():
    if v > maxcount:
      maxitem = k
      maxcount = v
  if maxcount == 1:
    print "All values only appear once"
  elif counts.values().count (maxcount) > 1:
    print "List has multiple modes"
  else:
    print "Mode of list:", maxitem

This doesn’t have a few error checks that it should have, but it will find the mode without importing any functions and will print a message if all values appear only once. It will also detect multiple items sharing the same maximum count, although it wasn’t clear if you wanted that.


回答 12

该函数将返回一个函数的一个或多个模式,无论返回多少,以及返回数据集中一个或多个模式的频率。如果没有模式(即所有项目仅发生一次),该函数将返回错误字符串。这类似于上面的A_nagpal的函数,但据我拙见,它更完整,而且我认为对于任何Python新手(例如您的人)来说,阅读此问题更容易理解。

 def l_mode(list_in):
    count_dict = {}
    for e in (list_in):   
        count = list_in.count(e)
        if e not in count_dict.keys():
            count_dict[e] = count
    max_count = 0 
    for key in count_dict: 
        if count_dict[key] >= max_count:
            max_count = count_dict[key]
    corr_keys = [] 
    for corr_key, count_value in count_dict.items():
        if count_dict[corr_key] == max_count:
            corr_keys.append(corr_key)
    if max_count == 1 and len(count_dict) != 1: 
        return 'There is no mode for this data set. All values occur only once.'
    else: 
        corr_keys = sorted(corr_keys)
        return corr_keys, max_count

This function returns the mode or modes of a function no matter how many, as well as the frequency of the mode or modes in the dataset. If there is no mode (ie. all items occur only once), the function returns an error string. This is similar to A_nagpal’s function above but is, in my humble opinion, more complete, and I think it’s easier to understand for any Python novices (such as yours truly) reading this question to understand.

 def l_mode(list_in):
    count_dict = {}
    for e in (list_in):   
        count = list_in.count(e)
        if e not in count_dict.keys():
            count_dict[e] = count
    max_count = 0 
    for key in count_dict: 
        if count_dict[key] >= max_count:
            max_count = count_dict[key]
    corr_keys = [] 
    for corr_key, count_value in count_dict.items():
        if count_dict[corr_key] == max_count:
            corr_keys.append(corr_key)
    if max_count == 1 and len(count_dict) != 1: 
        return 'There is no mode for this data set. All values occur only once.'
    else: 
        corr_keys = sorted(corr_keys)
        return corr_keys, max_count

回答 13

这将返回所有模式:

def mode(numbers)
    largestCount = 0
    modes = []
    for x in numbers:
        if x in modes:
            continue
        count = numbers.count(x)
        if count > largestCount:
            del modes[:]
            modes.append(x)
            largestCount = count
        elif count == largestCount:
            modes.append(x)
    return modes

This will return all modes:

def mode(numbers)
    largestCount = 0
    modes = []
    for x in numbers:
        if x in modes:
            continue
        count = numbers.count(x)
        if count > largestCount:
            del modes[:]
            modes.append(x)
            largestCount = count
        elif count == largestCount:
            modes.append(x)
    return modes

回答 14

简单代码,无需输入即可查找列表模式:

nums = #your_list_goes_here
nums.sort()
counts = dict()
for i in nums:
    counts[i] = counts.get(i, 0) + 1
mode = max(counts, key=counts.get)

在多种模式下,它应该返回最小节点。

Simple code that finds the mode of the list without any imports:

nums = #your_list_goes_here
nums.sort()
counts = dict()
for i in nums:
    counts[i] = counts.get(i, 0) + 1
mode = max(counts, key=counts.get)

In case of multiple modes, it should return the minimum node.


回答 15

def mode(inp_list):
    sort_list = sorted(inp_list)
    dict1 = {}
    for i in sort_list:        
            count = sort_list.count(i)
            if i not in dict1.keys():
                dict1[i] = count

    maximum = 0 #no. of occurences
    max_key = -1 #element having the most occurences

    for key in dict1:
        if(dict1[key]>maximum):
            maximum = dict1[key]
            max_key = key 
        elif(dict1[key]==maximum):
            if(key<max_key):
                maximum = dict1[key]
                max_key = key

    return max_key
def mode(inp_list):
    sort_list = sorted(inp_list)
    dict1 = {}
    for i in sort_list:        
            count = sort_list.count(i)
            if i not in dict1.keys():
                dict1[i] = count

    maximum = 0 #no. of occurences
    max_key = -1 #element having the most occurences

    for key in dict1:
        if(dict1[key]>maximum):
            maximum = dict1[key]
            max_key = key 
        elif(dict1[key]==maximum):
            if(key<max_key):
                maximum = dict1[key]
                max_key = key

    return max_key

回答 16

def mode(data):
    lst =[]
    hgh=0
    for i in range(len(data)):
        lst.append(data.count(data[i]))
    m= max(lst)
    ml = [x for x in data if data.count(x)==m ] #to find most frequent values
    mode = []
    for x in ml: #to remove duplicates of mode
        if x not in mode:
        mode.append(x)
    return mode
print mode([1,2,2,2,2,7,7,5,5,5,5])
def mode(data):
    lst =[]
    hgh=0
    for i in range(len(data)):
        lst.append(data.count(data[i]))
    m= max(lst)
    ml = [x for x in data if data.count(x)==m ] #to find most frequent values
    mode = []
    for x in ml: #to remove duplicates of mode
        if x not in mode:
        mode.append(x)
    return mode
print mode([1,2,2,2,2,7,7,5,5,5,5])

回答 17

这是一个简单的函数,它获取列表中出现的第一种模式。它使用列表元素作为键和出现次数来创建字典,然后读取字典值以获取模式。

def findMode(readList):
    numCount={}
    highestNum=0
    for i in readList:
        if i in numCount.keys(): numCount[i] += 1
        else: numCount[i] = 1
    for i in numCount.keys():
        if numCount[i] > highestNum:
            highestNum=numCount[i]
            mode=i
    if highestNum != 1: print(mode)
    elif highestNum == 1: print("All elements of list appear once.")

Here is a simple function that gets the first mode that occurs in a list. It makes a dictionary with the list elements as keys and number of occurrences and then reads the dict values to get the mode.

def findMode(readList):
    numCount={}
    highestNum=0
    for i in readList:
        if i in numCount.keys(): numCount[i] += 1
        else: numCount[i] = 1
    for i in numCount.keys():
        if numCount[i] > highestNum:
            highestNum=numCount[i]
            mode=i
    if highestNum != 1: print(mode)
    elif highestNum == 1: print("All elements of list appear once.")

回答 18

如果您想使用一种对课堂有用的清晰方法,并且仅通过理解使用列表和词典,则可以执行以下操作:

def mode(my_list):
    # Form a new list with the unique elements
    unique_list = sorted(list(set(my_list)))
    # Create a comprehensive dictionary with the uniques and their count
    appearance = {a:my_list.count(a) for a in unique_list} 
    # Calculate max number of appearances
    max_app = max(appearance.values())
    # Return the elements of the dictionary that appear that # of times
    return {k: v for k, v in appearance.items() if v == max_app}

If you want a clear approach, useful for classroom and only using lists and dictionaries by comprehension, you can do:

def mode(my_list):
    # Form a new list with the unique elements
    unique_list = sorted(list(set(my_list)))
    # Create a comprehensive dictionary with the uniques and their count
    appearance = {a:my_list.count(a) for a in unique_list} 
    # Calculate max number of appearances
    max_app = max(appearance.values())
    # Return the elements of the dictionary that appear that # of times
    return {k: v for k, v in appearance.items() if v == max_app}

回答 19

#function to find mode
def mode(data):  
    modecnt=0
#for count of number appearing
    for i in range(len(data)):
        icount=data.count(data[i])
#for storing count of each number in list will be stored
        if icount>modecnt:
#the loop activates if current count if greater than the previous count 
            mode=data[i]
#here the mode of number is stored 
            modecnt=icount
#count of the appearance of number is stored
    return mode
print mode(data1)
#function to find mode
def mode(data):  
    modecnt=0
#for count of number appearing
    for i in range(len(data)):
        icount=data.count(data[i])
#for storing count of each number in list will be stored
        if icount>modecnt:
#the loop activates if current count if greater than the previous count 
            mode=data[i]
#here the mode of number is stored 
            modecnt=icount
#count of the appearance of number is stored
    return mode
print mode(data1)

回答 20

您可以在这里找到列表的均值,中位数和众数:

import numpy as np
from scipy import stats

#to take input
size = int(input())
numbers = list(map(int, input().split()))

print(np.mean(numbers))
print(np.median(numbers))
print(int(stats.mode(numbers)[0]))

Here is how you can find mean,median and mode of a list:

import numpy as np
from scipy import stats

#to take input
size = int(input())
numbers = list(map(int, input().split()))

print(np.mean(numbers))
print(np.median(numbers))
print(int(stats.mode(numbers)[0]))

回答 21

import numpy as np
def get_mode(xs):
    values, counts = np.unique(xs, return_counts=True)
    max_count_index = np.argmax(counts) #return the index with max value counts
    return values[max_count_index]
print(get_mode([1,7,2,5,3,3,8,3,2]))
import numpy as np
def get_mode(xs):
    values, counts = np.unique(xs, return_counts=True)
    max_count_index = np.argmax(counts) #return the index with max value counts
    return values[max_count_index]
print(get_mode([1,7,2,5,3,3,8,3,2]))

回答 22

对于那些寻求最小模式的人,例如:使用numpy的双峰分布情况。

import numpy as np
mode = np.argmax(np.bincount(your_list))

For those looking for the minimum mode, e.g:case of bi-modal distribution, using numpy.

import numpy as np
mode = np.argmax(np.bincount(your_list))

回答 23

数据集的模式是该集中最常出现的成员。如果有两个成员最常出现且次数相同,则数据具有两种模式。这就是所谓的双峰

如果有两种以上的模式,那么数据将被称为multimodal。如果数据集中的所有成员都出现相同的次数,则数据集中根本没有模式

以下功能modes()可用于在给定的数据列表中查找模式

import numpy as np; import pandas as pd

def modes(arr):
    df = pd.DataFrame(arr, columns=['Values'])
    dat = pd.crosstab(df['Values'], columns=['Freq'])
    if len(np.unique((dat['Freq']))) > 1:
        mode = list(dat.index[np.array(dat['Freq'] == max(dat['Freq']))])
        return mode
    else:
        print("There is NO mode in the data set")

输出:

# For a list of numbers in x as
In [1]: x = [2, 3, 4, 5, 7, 9, 8, 12, 2, 1, 1, 1, 3, 3, 2, 6, 12, 3, 7, 8, 9, 7, 12, 10, 10, 11, 12, 2]
In [2]: modes(x)
Out[2]: [2, 3, 12]
# For a list of repeated numbers in y as
In [3]: y = [2, 2, 3, 3, 4, 4, 10, 10]
In [4]: modes(y)
There is NO mode in the data set
# For a list of stings/characters in z as
In [5]: z = ['a', 'b', 'b', 'b', 'e', 'e', 'e', 'd', 'g', 'g', 'c', 'g', 'g', 'a', 'a', 'c', 'a']
In [6]: modes(z)
Out[6]: ['a', 'g']

如果我们不想从这些包中导入numpypandas调用任何函数,则要获得相同的输出,modes()可以将函数编写为:

def modes(arr):
    cnt = []
    for i in arr:
        cnt.append(arr.count(i))
    uniq_cnt = []
    for i in cnt:
        if i not in uniq_cnt:
            uniq_cnt.append(i)
    if len(uniq_cnt) > 1:
        m = []
        for i in list(range(len(cnt))):
            if cnt[i] == max(uniq_cnt):
                m.append(arr[i])
        mode = []
        for i in m:
            if i not in mode:
                mode.append(i)
        return mode
    else:
        print("There is NO mode in the data set")

Mode of a data set is/are the member(s) that occur(s) most frequently in the set. If there are two members that appear most often with same number of times, then the data has two modes. This is called bimodal.

If there are more than 2 modes, then the data would be called multimodal. If all the members in the data set appear the same number of times, then the data set has no mode at all.

Following function modes() can work to find mode(s) in a given list of data:

import numpy as np; import pandas as pd

def modes(arr):
    df = pd.DataFrame(arr, columns=['Values'])
    dat = pd.crosstab(df['Values'], columns=['Freq'])
    if len(np.unique((dat['Freq']))) > 1:
        mode = list(dat.index[np.array(dat['Freq'] == max(dat['Freq']))])
        return mode
    else:
        print("There is NO mode in the data set")

Output:

# For a list of numbers in x as
In [1]: x = [2, 3, 4, 5, 7, 9, 8, 12, 2, 1, 1, 1, 3, 3, 2, 6, 12, 3, 7, 8, 9, 7, 12, 10, 10, 11, 12, 2]
In [2]: modes(x)
Out[2]: [2, 3, 12]
# For a list of repeated numbers in y as
In [3]: y = [2, 2, 3, 3, 4, 4, 10, 10]
In [4]: modes(y)
There is NO mode in the data set
# For a list of stings/characters in z as
In [5]: z = ['a', 'b', 'b', 'b', 'e', 'e', 'e', 'd', 'g', 'g', 'c', 'g', 'g', 'a', 'a', 'c', 'a']
In [6]: modes(z)
Out[6]: ['a', 'g']

If we do not want to import numpy or pandas to call any function from these packages, then to get this same output, modes() function can be written as:

def modes(arr):
    cnt = []
    for i in arr:
        cnt.append(arr.count(i))
    uniq_cnt = []
    for i in cnt:
        if i not in uniq_cnt:
            uniq_cnt.append(i)
    if len(uniq_cnt) > 1:
        m = []
        for i in list(range(len(cnt))):
            if cnt[i] == max(uniq_cnt):
                m.append(arr[i])
        mode = []
        for i in m:
            if i not in mode:
                mode.append(i)
        return mode
    else:
        print("There is NO mode in the data set")

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。