问题:查找列表模式
给定项目列表,回想一下该模式列表是最常出现的项目。
我想知道如何创建一个函数,该函数可以找到列表的模式,但是如果列表不具有模式(例如,列表中的所有项目仅出现一次),则会显示一条消息。我想使此功能不导入任何功能。我正在尝试从头开始实现自己的功能。
回答 0
您可以使用max
功能和键。看看使用’key’和lambda表达式的python max函数。
max(set(lst), key=lst.count)
回答 1
from collections import Counter
data = Counter(your_list_in_here)
data.most_common() # Returns all unique items and their counts
data.most_common(1) # Returns the highest occurring item
注意:Counter在python 2.7中是新的,并且在早期版本中不可用。
回答 2
Python 3.4包含了method statistics.mode
,所以它很简单:
>>> from statistics import mode
>>> mode([1, 1, 2, 3, 3, 3, 3, 4])
3
列表中可以有任何类型的元素,而不仅仅是数字:
>>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
'red'
回答 3
从一些统计软件(即SciPy和MATLAB)中获取一个叶子,它们只会返回最小的最常见值,因此,如果两个值相等地频繁出现,则会返回其中的最小值。希望有一个例子可以帮助:
>>> from scipy.stats import mode
>>> mode([1, 2, 3, 4, 5])
(array([ 1.]), array([ 1.]))
>>> mode([1, 2, 2, 3, 3, 4, 5])
(array([ 2.]), array([ 2.]))
>>> mode([1, 2, 2, -3, -3, 4, 5])
(array([-3.]), array([ 2.]))
有什么原因导致您无法遵守该约定?
回答 4
有许多简单的方法可以在Python中找到列表模式,例如:
import statistics
statistics.mode([1,2,3,3])
>>> 3
或者,您可以通过计数找到最大值
max(array, key = array.count)
这两种方法的问题在于它们不能在多种模式下使用。第一个返回错误,而第二个返回第一个模式。
为了找到集合的模式,您可以使用以下功能:
def mode(array):
most = max(list(map(array.count, array)))
return list(set(filter(lambda x: array.count(x) == most, array)))
回答 5
扩展在列表为空时不起作用的社区答案,这是mode的有效代码:
def mode(arr):
if arr==[]:
return None
else:
return max(set(arr), key=arr.count)
回答 6
如果您对最小,最大或所有模式都感兴趣:
def get_small_mode(numbers, out_mode):
counts = {k:numbers.count(k) for k in set(numbers)}
modes = sorted(dict(filter(lambda x: x[1] == max(counts.values()), counts.items())).keys())
if out_mode=='smallest':
return modes[0]
elif out_mode=='largest':
return modes[-1]
else:
return modes
回答 7
我写了这个方便的功能来找到模式。
def mode(nums):
corresponding={}
occurances=[]
for i in nums:
count = nums.count(i)
corresponding.update({i:count})
for i in corresponding:
freq=corresponding[i]
occurances.append(freq)
maxFreq=max(occurances)
keys=corresponding.keys()
values=corresponding.values()
index_v = values.index(maxFreq)
global mode
mode = keys[index_v]
return mode
回答 8
简短,但有点丑陋:
def mode(arr) :
m = max([arr.count(a) for a in arr])
return [x for x in arr if arr.count(x) == m][0] if m>1 else None
使用字典,稍微不那么难看:
def mode(arr) :
f = {}
for a in arr : f[a] = f.get(a,0)+1
m = max(f.values())
t = [(x,f[x]) for x in f if f[x]==m]
return m > 1 t[0][0] else None
回答 9
稍长一些,但是可以有多种模式,并且可以获取具有最多计数或数据类型混合的字符串。
def getmode(inplist):
'''with list of items as input, returns mode
'''
dictofcounts = {}
listofcounts = []
for i in inplist:
countofi = inplist.count(i) # count items for each item in list
listofcounts.append(countofi) # add counts to list
dictofcounts[i]=countofi # add counts and item in dict to get later
maxcount = max(listofcounts) # get max count of items
if maxcount ==1:
print "There is no mode for this dataset, values occur only once"
else:
modelist = [] # if more than one mode, add to list to print out
for key, item in dictofcounts.iteritems():
if item ==maxcount: # get item from original list with most counts
modelist.append(str(key))
print "The mode(s) are:",' and '.join(modelist)
return modelist
回答 10
要使一个数字成为a mode
,它必须比列表中至少一个其他数字出现更多次,并且不能是列表中唯一的数字。因此,我重构了@mathwizurd的答案(使用该difference
方法),如下所示:
def mode(array):
'''
returns a set containing valid modes
returns a message if no valid mode exists
- when all numbers occur the same number of times
- when only one number occurs in the list
- when no number occurs in the list
'''
most = max(map(array.count, array)) if array else None
mset = set(filter(lambda x: array.count(x) == most, array))
return mset if set(array) - mset else "list does not have a mode!"
这些测试成功通过:
mode([]) == None
mode([1]) == None
mode([1, 1]) == None
mode([1, 1, 2, 2]) == None
回答 11
为什么不只是
def print_mode (thelist):
counts = {}
for item in thelist:
counts [item] = counts.get (item, 0) + 1
maxcount = 0
maxitem = None
for k, v in counts.items ():
if v > maxcount:
maxitem = k
maxcount = v
if maxcount == 1:
print "All values only appear once"
elif counts.values().count (maxcount) > 1:
print "List has multiple modes"
else:
print "Mode of list:", maxitem
它没有应该进行的一些错误检查,但是它将在不导入任何功能的情况下找到模式,并且如果所有值仅出现一次,则将打印一条消息。它还不清楚是否有多个项目共享相同的最大计数。
回答 12
该函数将返回一个函数的一个或多个模式,无论返回多少,以及返回数据集中一个或多个模式的频率。如果没有模式(即所有项目仅发生一次),该函数将返回错误字符串。这类似于上面的A_nagpal的函数,但据我拙见,它更完整,而且我认为对于任何Python新手(例如您的人)来说,阅读此问题更容易理解。
def l_mode(list_in):
count_dict = {}
for e in (list_in):
count = list_in.count(e)
if e not in count_dict.keys():
count_dict[e] = count
max_count = 0
for key in count_dict:
if count_dict[key] >= max_count:
max_count = count_dict[key]
corr_keys = []
for corr_key, count_value in count_dict.items():
if count_dict[corr_key] == max_count:
corr_keys.append(corr_key)
if max_count == 1 and len(count_dict) != 1:
return 'There is no mode for this data set. All values occur only once.'
else:
corr_keys = sorted(corr_keys)
return corr_keys, max_count
回答 13
这将返回所有模式:
def mode(numbers)
largestCount = 0
modes = []
for x in numbers:
if x in modes:
continue
count = numbers.count(x)
if count > largestCount:
del modes[:]
modes.append(x)
largestCount = count
elif count == largestCount:
modes.append(x)
return modes
回答 14
简单代码,无需输入即可查找列表模式:
nums = #your_list_goes_here
nums.sort()
counts = dict()
for i in nums:
counts[i] = counts.get(i, 0) + 1
mode = max(counts, key=counts.get)
在多种模式下,它应该返回最小节点。
回答 15
def mode(inp_list):
sort_list = sorted(inp_list)
dict1 = {}
for i in sort_list:
count = sort_list.count(i)
if i not in dict1.keys():
dict1[i] = count
maximum = 0 #no. of occurences
max_key = -1 #element having the most occurences
for key in dict1:
if(dict1[key]>maximum):
maximum = dict1[key]
max_key = key
elif(dict1[key]==maximum):
if(key<max_key):
maximum = dict1[key]
max_key = key
return max_key
回答 16
def mode(data):
lst =[]
hgh=0
for i in range(len(data)):
lst.append(data.count(data[i]))
m= max(lst)
ml = [x for x in data if data.count(x)==m ] #to find most frequent values
mode = []
for x in ml: #to remove duplicates of mode
if x not in mode:
mode.append(x)
return mode
print mode([1,2,2,2,2,7,7,5,5,5,5])
回答 17
这是一个简单的函数,它获取列表中出现的第一种模式。它使用列表元素作为键和出现次数来创建字典,然后读取字典值以获取模式。
def findMode(readList):
numCount={}
highestNum=0
for i in readList:
if i in numCount.keys(): numCount[i] += 1
else: numCount[i] = 1
for i in numCount.keys():
if numCount[i] > highestNum:
highestNum=numCount[i]
mode=i
if highestNum != 1: print(mode)
elif highestNum == 1: print("All elements of list appear once.")
回答 18
如果您想使用一种对课堂有用的清晰方法,并且仅通过理解使用列表和词典,则可以执行以下操作:
def mode(my_list):
# Form a new list with the unique elements
unique_list = sorted(list(set(my_list)))
# Create a comprehensive dictionary with the uniques and their count
appearance = {a:my_list.count(a) for a in unique_list}
# Calculate max number of appearances
max_app = max(appearance.values())
# Return the elements of the dictionary that appear that # of times
return {k: v for k, v in appearance.items() if v == max_app}
回答 19
#function to find mode
def mode(data):
modecnt=0
#for count of number appearing
for i in range(len(data)):
icount=data.count(data[i])
#for storing count of each number in list will be stored
if icount>modecnt:
#the loop activates if current count if greater than the previous count
mode=data[i]
#here the mode of number is stored
modecnt=icount
#count of the appearance of number is stored
return mode
print mode(data1)
回答 20
您可以在这里找到列表的均值,中位数和众数:
import numpy as np
from scipy import stats
#to take input
size = int(input())
numbers = list(map(int, input().split()))
print(np.mean(numbers))
print(np.median(numbers))
print(int(stats.mode(numbers)[0]))
回答 21
import numpy as np
def get_mode(xs):
values, counts = np.unique(xs, return_counts=True)
max_count_index = np.argmax(counts) #return the index with max value counts
return values[max_count_index]
print(get_mode([1,7,2,5,3,3,8,3,2]))
回答 22
对于那些寻求最小模式的人,例如:使用numpy的双峰分布情况。
import numpy as np
mode = np.argmax(np.bincount(your_list))
回答 23
数据集的模式是该集中最常出现的成员。如果有两个成员最常出现且次数相同,则数据具有两种模式。这就是所谓的双峰。
如果有两种以上的模式,那么数据将被称为multimodal。如果数据集中的所有成员都出现相同的次数,则数据集中根本没有模式。以下功能modes()
可用于在给定的数据列表中查找模式:
import numpy as np; import pandas as pd
def modes(arr):
df = pd.DataFrame(arr, columns=['Values'])
dat = pd.crosstab(df['Values'], columns=['Freq'])
if len(np.unique((dat['Freq']))) > 1:
mode = list(dat.index[np.array(dat['Freq'] == max(dat['Freq']))])
return mode
else:
print("There is NO mode in the data set")
输出:
# For a list of numbers in x as
In [1]: x = [2, 3, 4, 5, 7, 9, 8, 12, 2, 1, 1, 1, 3, 3, 2, 6, 12, 3, 7, 8, 9, 7, 12, 10, 10, 11, 12, 2]
In [2]: modes(x)
Out[2]: [2, 3, 12]
# For a list of repeated numbers in y as
In [3]: y = [2, 2, 3, 3, 4, 4, 10, 10]
In [4]: modes(y)
There is NO mode in the data set
# For a list of stings/characters in z as
In [5]: z = ['a', 'b', 'b', 'b', 'e', 'e', 'e', 'd', 'g', 'g', 'c', 'g', 'g', 'a', 'a', 'c', 'a']
In [6]: modes(z)
Out[6]: ['a', 'g']
如果我们不想从这些包中导入numpy
或pandas
调用任何函数,则要获得相同的输出,modes()
可以将函数编写为:
def modes(arr):
cnt = []
for i in arr:
cnt.append(arr.count(i))
uniq_cnt = []
for i in cnt:
if i not in uniq_cnt:
uniq_cnt.append(i)
if len(uniq_cnt) > 1:
m = []
for i in list(range(len(cnt))):
if cnt[i] == max(uniq_cnt):
m.append(arr[i])
mode = []
for i in m:
if i not in mode:
mode.append(i)
return mode
else:
print("There is NO mode in the data set")