问题:检查pandas数据框索引中是否存在值

我敢肯定有一个明显的方法可以做到这一点,但是现在还不能想到任何光滑的东西。

基本上不是引发异常,而是要获取TrueFalse查看pandas df索引中是否存在值。

import pandas as pd
df = pd.DataFrame({'test':[1,2,3,4]}, index=['a','b','c','d'])
df.loc['g']  # (should give False)

我现在工作的是以下内容

sum(df.index == 'g')

I am sure there is an obvious way to do this but cant think of anything slick right now.

Basically instead of raising exception I would like to get True or False to see if a value exists in pandas df index.

import pandas as pd
df = pd.DataFrame({'test':[1,2,3,4]}, index=['a','b','c','d'])
df.loc['g']  # (should give False)

What I have working now is the following

sum(df.index == 'g')

回答 0

这应该可以解决问题

'g' in df.index

This should do the trick

'g' in df.index

回答 1

仅供参考,这是我一直在寻找的东西,您可以通过附加“ .values”方法来测试值或索引中是否存在,例如

g in df.<your selected field>.values
g in df.index.values

我发现添加“ .values”以获取简单的列表或ndarray会使存在或“输入”检查与其他python工具一起运行更为流畅。只是以为我会把那个扔给别人。

Just for reference as it was something I was looking for, you can test for presence within the values or the index by appending the “.values” method, e.g.

g in df.<your selected field>.values
g in df.index.values

I find that adding the “.values” to get a simple list or ndarray out makes exist or “in” checks run more smoothly with the other python tools. Just thought I’d toss that out there for people.


回答 2

多索引的工作方式与单索引略有不同。这是多索引数据框的一些方法。

df = pd.DataFrame({'col1': ['a', 'b','c', 'd'], 'col2': ['X','X','Y', 'Y'], 'col3': [1, 2, 3, 4]}, columns=['col1', 'col2', 'col3'])
df = df.set_index(['col1', 'col2'])

in df.index 仅在检查单个索引值时才适用于第一级。

'a' in df.index     # True
'X' in df.index     # False

检查df.index.levels其他级别。

'a' in df.index.levels[0] # True
'X' in df.index.levels[1] # True

签入df.index索引组合元组。

('a', 'X') in df.index  # True
('a', 'Y') in df.index  # False

Multi index works a little different from single index. Here are some methods for multi-indexed dataframe.

df = pd.DataFrame({'col1': ['a', 'b','c', 'd'], 'col2': ['X','X','Y', 'Y'], 'col3': [1, 2, 3, 4]}, columns=['col1', 'col2', 'col3'])
df = df.set_index(['col1', 'col2'])

in df.index works for the first level only when checking single index value.

'a' in df.index     # True
'X' in df.index     # False

Check df.index.levels for other levels.

'a' in df.index.levels[0] # True
'X' in df.index.levels[1] # True

Check in df.index for an index combination tuple.

('a', 'X') in df.index  # True
('a', 'Y') in df.index  # False

回答 3

与DataFrame:df_data

>>> df_data
  id   name  value
0  a  ampha      1
1  b   beta      2
2  c     ce      3

我试过了:

>>> getattr(df_data, 'value').isin([1]).any()
True
>>> getattr(df_data, 'value').isin(['1']).any()
True

但:

>>> 1 in getattr(df_data, 'value')
True
>>> '1' in getattr(df_data, 'value')
False

很有趣:D

with DataFrame: df_data

>>> df_data
  id   name  value
0  a  ampha      1
1  b   beta      2
2  c     ce      3

I tried:

>>> getattr(df_data, 'value').isin([1]).any()
True
>>> getattr(df_data, 'value').isin(['1']).any()
True

but:

>>> 1 in getattr(df_data, 'value')
True
>>> '1' in getattr(df_data, 'value')
False

So fun :D


回答 4

df = pandas.DataFrame({'g':[1]}, index=['isStop'])

#df.loc['g']

if 'g' in df.index:
    print("find g")

if 'isStop' in df.index:
    print("find a") 
df = pandas.DataFrame({'g':[1]}, index=['isStop'])

#df.loc['g']

if 'g' in df.index:
    print("find g")

if 'isStop' in df.index:
    print("find a") 

回答 5

下面的代码不打印布尔值,但允许按索引对数据框进行子集设置…我知道这可能不是解决问题的最有效方法,但是我(1)喜欢这种读取方式,并且(2)您可以轻松地进行子集化df2中存在df1索引的位置:

df3 = df1[df1.index.isin(df2.index)]

或df2中不存在df1索引的地方…

df3 = df1[~df1.index.isin(df2.index)]

Code below does not print boolean, but allows for dataframe subsetting by index… I understand this is likely not the most efficient way to solve the problem, but I (1) like the way this reads and (2) you can easily subset where df1 index exists in df2:

df3 = df1[df1.index.isin(df2.index)]

or where df1 index does not exist in df2…

df3 = df1[~df1.index.isin(df2.index)]

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。