问题:检测NumPy数组是否包含至少一个非数值?

我需要编写一个函数来检测输入是否包含至少一个非数字值。如果找到一个非数字值,我将引发一个错误(因为该计算应仅返回一个数字值)。预先不知道输入数组的维数-无论ndim如何,函数都应给出正确的值。更为复杂的是,输入可能是单个浮点数,numpy.float64或者甚至是零维数组之类的奇数。

解决此问题的明显方法是编写一个递归函数,该函数对数组中的每个可迭代对象进行迭代,直到找到一个非iterabe。它将numpy.isnan()对每个不可迭代的对象应用该函数。如果找到至少一个非数字值,则该函数将立即返回False。否则,如果iterable中的所有值都是数字,它将最终返回True。

效果很好,但是速度很慢,我希望NumPy有更好的方法。什么是更快更麻木的替代品?

这是我的样机:

def contains_nan( myarray ):
    """
    @param myarray : An n-dimensional array or a single float
    @type myarray : numpy.ndarray, numpy.array, float
    @returns: bool
    Returns true if myarray is numeric or only contains numeric values.
    Returns false if at least one non-numeric value exists
    Not-A-Number is given by the numpy.isnan() function.
    """
    return True

I need to write a function which will detect if the input contains at least one value which is non-numeric. If a non-numeric value is found I will raise an error (because the calculation should only return a numeric value). The number of dimensions of the input array is not known in advance – the function should give the correct value regardless of ndim. As an extra complication the input could be a single float or numpy.float64 or even something oddball like a zero-dimensional array.

The obvious way to solve this is to write a recursive function which iterates over every iterable object in the array until it finds a non-iterabe. It will apply the numpy.isnan() function over every non-iterable object. If at least one non-numeric value is found then the function will return False immediately. Otherwise if all the values in the iterable are numeric it will eventually return True.

That works just fine, but it’s pretty slow and I expect that NumPy has a much better way to do it. What is an alternative that is faster and more numpyish?

Here’s my mockup:

def contains_nan( myarray ):
    """
    @param myarray : An n-dimensional array or a single float
    @type myarray : numpy.ndarray, numpy.array, float
    @returns: bool
    Returns true if myarray is numeric or only contains numeric values.
    Returns false if at least one non-numeric value exists
    Not-A-Number is given by the numpy.isnan() function.
    """
    return True

回答 0

这应该比迭代更快,并且无论形状如何都可以工作。

numpy.isnan(myarray).any()

编辑:快30倍:

import timeit
s = 'import numpy;a = numpy.arange(10000.).reshape((100,100));a[10,10]=numpy.nan'
ms = [
    'numpy.isnan(a).any()',
    'any(numpy.isnan(x) for x in a.flatten())']
for m in ms:
    print "  %.2f s" % timeit.Timer(m, s).timeit(1000), m

结果:

  0.11 s numpy.isnan(a).any()
  3.75 s any(numpy.isnan(x) for x in a.flatten())

奖励:它适用于非数组NumPy类型:

>>> a = numpy.float64(42.)
>>> numpy.isnan(a).any()
False
>>> a = numpy.float64(numpy.nan)
>>> numpy.isnan(a).any()
True

This should be faster than iterating and will work regardless of shape.

numpy.isnan(myarray).any()

Edit: 30x faster:

import timeit
s = 'import numpy;a = numpy.arange(10000.).reshape((100,100));a[10,10]=numpy.nan'
ms = [
    'numpy.isnan(a).any()',
    'any(numpy.isnan(x) for x in a.flatten())']
for m in ms:
    print "  %.2f s" % timeit.Timer(m, s).timeit(1000), m

Results:

  0.11 s numpy.isnan(a).any()
  3.75 s any(numpy.isnan(x) for x in a.flatten())

Bonus: it works fine for non-array NumPy types:

>>> a = numpy.float64(42.)
>>> numpy.isnan(a).any()
False
>>> a = numpy.float64(numpy.nan)
>>> numpy.isnan(a).any()
True

回答 1

如果无穷是一个可能的值,我将使用numpy.isfinite

numpy.isfinite(myarray).all()

如果以上计算结果为True,则不myarray包含numpy.nannumpy.inf-numpy.inf值。

numpy.nan可以使用numpy.inf值,例如:

In [11]: import numpy as np

In [12]: b = np.array([[4, np.inf],[np.nan, -np.inf]])

In [13]: np.isnan(b)
Out[13]: 
array([[False, False],
       [ True, False]], dtype=bool)

In [14]: np.isfinite(b)
Out[14]: 
array([[ True, False],
       [False, False]], dtype=bool)

If infinity is a possible value, I would use numpy.isfinite

numpy.isfinite(myarray).all()

If the above evaluates to True, then myarray contains no, numpy.nan, numpy.inf or -numpy.inf values.

numpy.nan will be OK with numpy.inf values, for example:

In [11]: import numpy as np

In [12]: b = np.array([[4, np.inf],[np.nan, -np.inf]])

In [13]: np.isnan(b)
Out[13]: 
array([[False, False],
       [ True, False]], dtype=bool)

In [14]: np.isfinite(b)
Out[14]: 
array([[ True, False],
       [False, False]], dtype=bool)

回答 2

ff!微秒!永远不要在几微秒内解决可以在十亿分之一秒内解决的问题。

注意接受的答案:

  • 遍历整个数据,无论是否找到nan
  • 创建一个大小为N的临时数组,该数组是多余的。

更好的解决方案是在找到NAN时立即返回True:

import numba
import numpy as np

NAN = float("nan")

@numba.njit(nogil=True)
def _any_nans(a):
    for x in a:
        if np.isnan(x): return True
    return False

@numba.jit
def any_nans(a):
    if not a.dtype.kind=='f': return False
    return _any_nans(a.flat)

array1M = np.random.rand(1000000)
assert any_nans(array1M)==False
%timeit any_nans(array1M)  # 573us

array1M[0] = NAN
assert any_nans(array1M)==True
%timeit any_nans(array1M)  # 774ns  (!nanoseconds)

并适用于n维:

array1M_nd = array1M.reshape((len(array1M)/2, 2))
assert any_nans(array1M_nd)==True
%timeit any_nans(array1M_nd)  # 774ns

将此与numpy本机解决方案进行比较:

def any_nans(a):
    if not a.dtype.kind=='f': return False
    return np.isnan(a).any()

array1M = np.random.rand(1000000)
assert any_nans(array1M)==False
%timeit any_nans(array1M)  # 456us

array1M[0] = NAN
assert any_nans(array1M)==True
%timeit any_nans(array1M)  # 470us

%timeit np.isnan(array1M).any()  # 532us

提前退出方法是3阶或幅度加速(在某些情况下)。对于简单的注解,不要太破旧。

Pfft! Microseconds! Never solve a problem in microseconds that can be solved in nanoseconds.

Note that the accepted answer:

  • iterates over the whole data, regardless of whether a nan is found
  • creates a temporary array of size N, which is redundant.

A better solution is to return True immediately when NAN is found:

import numba
import numpy as np

NAN = float("nan")

@numba.njit(nogil=True)
def _any_nans(a):
    for x in a:
        if np.isnan(x): return True
    return False

@numba.jit
def any_nans(a):
    if not a.dtype.kind=='f': return False
    return _any_nans(a.flat)

array1M = np.random.rand(1000000)
assert any_nans(array1M)==False
%timeit any_nans(array1M)  # 573us

array1M[0] = NAN
assert any_nans(array1M)==True
%timeit any_nans(array1M)  # 774ns  (!nanoseconds)

and works for n-dimensions:

array1M_nd = array1M.reshape((len(array1M)/2, 2))
assert any_nans(array1M_nd)==True
%timeit any_nans(array1M_nd)  # 774ns

Compare this to the numpy native solution:

def any_nans(a):
    if not a.dtype.kind=='f': return False
    return np.isnan(a).any()

array1M = np.random.rand(1000000)
assert any_nans(array1M)==False
%timeit any_nans(array1M)  # 456us

array1M[0] = NAN
assert any_nans(array1M)==True
%timeit any_nans(array1M)  # 470us

%timeit np.isnan(array1M).any()  # 532us

The early-exit method is 3 orders or magnitude speedup (in some cases). Not too shabby for a simple annotation.


回答 3

使用numpy 1.3或svn,您可以执行此操作

In [1]: a = arange(10000.).reshape(100,100)

In [3]: isnan(a.max())
Out[3]: False

In [4]: a[50,50] = nan

In [5]: isnan(a.max())
Out[5]: True

In [6]: timeit isnan(a.max())
10000 loops, best of 3: 66.3 µs per loop

比较中对Nans的处理在早期版本中不一致。

With numpy 1.3 or svn you can do this

In [1]: a = arange(10000.).reshape(100,100)

In [3]: isnan(a.max())
Out[3]: False

In [4]: a[50,50] = nan

In [5]: isnan(a.max())
Out[5]: True

In [6]: timeit isnan(a.max())
10000 loops, best of 3: 66.3 µs per loop

The treatment of nans in comparisons was not consistent in earlier versions.


回答 4

(np.where(np.isnan(A)))[0].shape[0]将大于0如果A含有的至少一种元素nanA可以是一个n x m矩阵。

例:

import numpy as np

A = np.array([1,2,4,np.nan])

if (np.where(np.isnan(A)))[0].shape[0]: 
    print "A contains nan"
else:
    print "A does not contain nan"

(np.where(np.isnan(A)))[0].shape[0] will be greater than 0 if A contains at least one element of nan, A could be an n x m matrix.

Example:

import numpy as np

A = np.array([1,2,4,np.nan])

if (np.where(np.isnan(A)))[0].shape[0]: 
    print "A contains nan"
else:
    print "A does not contain nan"

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。