问题:比较两个DataFrame并并排输出它们的差异
我试图突出显示两个数据框之间到底发生了什么变化。
假设我有两个Python Pandas数据框:
"StudentRoster Jan-1":
id   Name   score                    isEnrolled           Comment
111  Jack   2.17                     True                 He was late to class
112  Nick   1.11                     False                Graduated
113  Zoe    4.12                     True       
"StudentRoster Jan-2":
id   Name   score                    isEnrolled           Comment
111  Jack   2.17                     True                 He was late to class
112  Nick   1.21                     False                Graduated
113  Zoe    4.12                     False                On vacation我的目标是输出一个HTML表:
- 标识已更改的行(可以是int,float,boolean,string)
- 输出具有相同,OLD和NEW值的行(理想情况下将其输出到HTML表中),以便使用者可以清楚地看到两个数据框之间的变化: - "StudentRoster Difference Jan-1 - Jan-2": id Name score isEnrolled Comment 112 Nick was 1.11| now 1.21 False Graduated 113 Zoe 4.12 was True | now False was "" | now "On vacation"
我想我可以逐行和逐列进行比较,但是有没有更简单的方法?
回答 0
第一部分类似于君士坦丁,您可以获取哪些行为空的布尔值*:
In [21]: ne = (df1 != df2).any(1)
In [22]: ne
Out[22]:
0    False
1     True
2     True
dtype: bool然后,我们可以查看哪些条目已更改:
In [23]: ne_stacked = (df1 != df2).stack()
In [24]: changed = ne_stacked[ne_stacked]
In [25]: changed.index.names = ['id', 'col']
In [26]: changed
Out[26]:
id  col
1   score         True
2   isEnrolled    True
    Comment       True
dtype: bool在这里,第一个条目是索引,第二个条目是已更改的列。
In [27]: difference_locations = np.where(df1 != df2)
In [28]: changed_from = df1.values[difference_locations]
In [29]: changed_to = df2.values[difference_locations]
In [30]: pd.DataFrame({'from': changed_from, 'to': changed_to}, index=changed.index)
Out[30]:
               from           to
id col
1  score       1.11         1.21
2  isEnrolled  True        False
   Comment     None  On vacation*注:这是非常重要的df1,并df2在这里分享相同的索引。为了克服这种歧义,您可以确保仅使用来查看共享标签df1.index & df2.index,但我想将其保留为练习。
回答 1
突出显示两个DataFrame之间的差异
可以使用DataFrame样式属性突出显示存在差异的单元格的背景色。
使用原始问题中的示例数据
第一步是使用concat功能将DataFrames水平连接,并使用keys参数区分每个帧:
df_all = pd.concat([df.set_index('id'), df2.set_index('id')], 
                   axis='columns', keys=['First', 'Second'])
df_all交换列级别并将相同的列名称彼此相邻可能更容易:
df_final = df_all.swaplevel(axis='columns')[df.columns[1:]]
df_final现在,更容易发现框架中的差异。但是,我们可以走得更远,并使用该style属性突出显示不同的单元格。我们定义了一个自定义函数来执行此操作,您可以在文档的此部分中看到。
def highlight_diff(data, color='yellow'):
    attr = 'background-color: {}'.format(color)
    other = data.xs('First', axis='columns', level=-1)
    return pd.DataFrame(np.where(data.ne(other, level=0), attr, ''),
                        index=data.index, columns=data.columns)
df_final.style.apply(highlight_diff, axis=None)这将突出显示两个均缺少值的单元格。您可以填充它们或提供额外的逻辑,以免突出显示它们。
回答 2
这个答案只是扩展了@Andy Hayden的值,使其在数字字段为时具有弹性nan,并将其包装到函数中。
import pandas as pd
import numpy as np
def diff_pd(df1, df2):
    """Identify differences between two pandas DataFrames"""
    assert (df1.columns == df2.columns).all(), \
        "DataFrame column names are different"
    if any(df1.dtypes != df2.dtypes):
        "Data Types are different, trying to convert"
        df2 = df2.astype(df1.dtypes)
    if df1.equals(df2):
        return None
    else:
        # need to account for np.nan != np.nan returning True
        diff_mask = (df1 != df2) & ~(df1.isnull() & df2.isnull())
        ne_stacked = diff_mask.stack()
        changed = ne_stacked[ne_stacked]
        changed.index.names = ['id', 'col']
        difference_locations = np.where(diff_mask)
        changed_from = df1.values[difference_locations]
        changed_to = df2.values[difference_locations]
        return pd.DataFrame({'from': changed_from, 'to': changed_to},
                            index=changed.index)因此,对于您的数据(略作编辑以使分数列中具有NaN):
import sys
if sys.version_info[0] < 3:
    from StringIO import StringIO
else:
    from io import StringIO
DF1 = StringIO("""id   Name   score                    isEnrolled           Comment
111  Jack   2.17                     True                 "He was late to class"
112  Nick   1.11                     False                "Graduated"
113  Zoe    NaN                     True                  " "
""")
DF2 = StringIO("""id   Name   score                    isEnrolled           Comment
111  Jack   2.17                     True                 "He was late to class"
112  Nick   1.21                     False                "Graduated"
113  Zoe    NaN                     False                "On vacation" """)
df1 = pd.read_table(DF1, sep='\s+', index_col='id')
df2 = pd.read_table(DF2, sep='\s+', index_col='id')
diff_pd(df1, df2)输出:
                from           to
id  col                          
112 score       1.11         1.21
113 isEnrolled  True        False
    Comment           On vacation回答 3
import pandas as pd
import io
texts = ['''\
id   Name   score                    isEnrolled                        Comment
111  Jack   2.17                     True                 He was late to class
112  Nick   1.11                     False                           Graduated
113  Zoe    4.12                     True       ''',
         '''\
id   Name   score                    isEnrolled                        Comment
111  Jack   2.17                     True                 He was late to class
112  Nick   1.21                     False                           Graduated
113  Zoe    4.12                     False                         On vacation''']
df1 = pd.read_fwf(io.StringIO(texts[0]), widths=[5,7,25,21,20])
df2 = pd.read_fwf(io.StringIO(texts[1]), widths=[5,7,25,21,20])
df = pd.concat([df1,df2]) 
print(df)
#     id  Name  score isEnrolled               Comment
# 0  111  Jack   2.17       True  He was late to class
# 1  112  Nick   1.11      False             Graduated
# 2  113   Zoe   4.12       True                   NaN
# 0  111  Jack   2.17       True  He was late to class
# 1  112  Nick   1.21      False             Graduated
# 2  113   Zoe   4.12      False           On vacation
df.set_index(['id', 'Name'], inplace=True)
print(df)
#           score isEnrolled               Comment
# id  Name                                        
# 111 Jack   2.17       True  He was late to class
# 112 Nick   1.11      False             Graduated
# 113 Zoe    4.12       True                   NaN
# 111 Jack   2.17       True  He was late to class
# 112 Nick   1.21      False             Graduated
# 113 Zoe    4.12      False           On vacation
def report_diff(x):
    return x[0] if x[0] == x[1] else '{} | {}'.format(*x)
changes = df.groupby(level=['id', 'Name']).agg(report_diff)
print(changes)版画
                score    isEnrolled               Comment
id  Name                                                 
111 Jack         2.17          True  He was late to class
112 Nick  1.11 | 1.21         False             Graduated
113 Zoe          4.12  True | False     nan | On vacation回答 4
我已经遇到了这个问题,但是在找到这篇文章之前找到了答案:
根据unutbu的答案,加载您的数据…
import pandas as pd
import io
texts = ['''\
id   Name   score                    isEnrolled                       Date
111  Jack                            True              2013-05-01 12:00:00
112  Nick   1.11                     False             2013-05-12 15:05:23
     Zoe    4.12                     True                                  ''',
         '''\
id   Name   score                    isEnrolled                       Date
111  Jack   2.17                     True              2013-05-01 12:00:00
112  Nick   1.21                     False                                
     Zoe    4.12                     False             2013-05-01 12:00:00''']
df1 = pd.read_fwf(io.StringIO(texts[0]), widths=[5,7,25,17,20], parse_dates=[4])
df2 = pd.read_fwf(io.StringIO(texts[1]), widths=[5,7,25,17,20], parse_dates=[4])…定义您的diff函数…
def report_diff(x):
    return x[0] if x[0] == x[1] else '{} | {}'.format(*x)然后,您可以简单地使用面板来得出结论:
my_panel = pd.Panel(dict(df1=df1,df2=df2))
print my_panel.apply(report_diff, axis=0)
#          id  Name        score    isEnrolled                       Date
#0        111  Jack   nan | 2.17          True        2013-05-01 12:00:00
#1        112  Nick  1.11 | 1.21         False  2013-05-12 15:05:23 | NaT
#2  nan | nan   Zoe         4.12  True | False  NaT | 2013-05-01 12:00:00顺便说一句,如果您使用的是IPython Notebook,则可能希望使用彩色的diff函数根据单元格是不同,相等还是left / right null来赋予颜色:
from IPython.display import HTML
pd.options.display.max_colwidth = 500  # You need this, otherwise pandas
#                          will limit your HTML strings to 50 characters
def report_diff(x):
    if x[0]==x[1]:
        return unicode(x[0].__str__())
    elif pd.isnull(x[0]) and pd.isnull(x[1]):
        return u'<table style="background-color:#00ff00;font-weight:bold;">'+\
            '<tr><td>%s</td></tr><tr><td>%s</td></tr></table>' % ('nan', 'nan')
    elif pd.isnull(x[0]) and ~pd.isnull(x[1]):
        return u'<table style="background-color:#ffff00;font-weight:bold;">'+\
            '<tr><td>%s</td></tr><tr><td>%s</td></tr></table>' % ('nan', x[1])
    elif ~pd.isnull(x[0]) and pd.isnull(x[1]):
        return u'<table style="background-color:#0000ff;font-weight:bold;">'+\
            '<tr><td>%s</td></tr><tr><td>%s</td></tr></table>' % (x[0],'nan')
    else:
        return u'<table style="background-color:#ff0000;font-weight:bold;">'+\
            '<tr><td>%s</td></tr><tr><td>%s</td></tr></table>' % (x[0], x[1])
HTML(my_panel.apply(report_diff, axis=0).to_html(escape=False))回答 5
如果您的两个数据帧中具有相同的ID,那么找出更改实际上是很容易的。这样做frame1 != frame2会为您提供一个布尔型DataFrame,其中每个True都是已更改的数据。由此,您可以通过轻松获得每个更改行的索引changedids = frame1.index[np.any(frame1 != frame2,axis=1)]。
回答 6
使用concat和drop_duplicates的另一种方法:
import sys
if sys.version_info[0] < 3:
    from StringIO import StringIO
else:
    from io import StringIO
import pandas as pd
DF1 = StringIO("""id   Name   score                    isEnrolled           Comment
111  Jack   2.17                     True                 "He was late to class"
112  Nick   1.11                     False                "Graduated"
113  Zoe    NaN                     True                  " "
""")
DF2 = StringIO("""id   Name   score                    isEnrolled           Comment
111  Jack   2.17                     True                 "He was late to class"
112  Nick   1.21                     False                "Graduated"
113  Zoe    NaN                     False                "On vacation" """)
df1 = pd.read_table(DF1, sep='\s+', index_col='id')
df2 = pd.read_table(DF2, sep='\s+', index_col='id')
#%%
dictionary = {1:df1,2:df2}
df=pd.concat(dictionary)
df.drop_duplicates(keep=False)输出:
       Name  score isEnrolled      Comment
  id                                      
1 112  Nick   1.11      False    Graduated
  113   Zoe    NaN       True             
2 112  Nick   1.21      False    Graduated
  113   Zoe    NaN      False  On vacation回答 7
摆弄@journois的答案后,由于Panel的贬值,我能够使用MultiIndex而不是Panel使它正常工作。
首先,创建一些虚拟数据:
df1 = pd.DataFrame({
    'id': ['111', '222', '333', '444', '555'],
    'let': ['a', 'b', 'c', 'd', 'e'],
    'num': ['1', '2', '3', '4', '5']
})
df2 = pd.DataFrame({
    'id': ['111', '222', '333', '444', '666'],
    'let': ['a', 'b', 'c', 'D', 'f'],
    'num': ['1', '2', 'Three', '4', '6'],
})然后,定义您的diff函数,在这种情况下,我将使用他的答案中的一个report_diff保持不变:
def report_diff(x):
    return x[0] if x[0] == x[1] else '{} | {}'.format(*x)然后,我将把数据连接到一个MultiIndex数据帧中:
df_all = pd.concat(
    [df1.set_index('id'), df2.set_index('id')], 
    axis='columns', 
    keys=['df1', 'df2'],
    join='outer'
)
df_all = df_all.swaplevel(axis='columns')[df1.columns[1:]]最后,我将report_diff向下应用每个列组:
df_final.groupby(level=0, axis=1).apply(lambda frame: frame.apply(report_diff, axis=1))输出:
         let        num
111        a          1
222        b          2
333        c  3 | Three
444    d | D          4
555  e | nan    5 | nan
666  nan | f    nan | 6仅此而已!
回答 8
扩展@cge的答案,这对于提高结果的可读性非常酷:
a[a != b][np.any(a != b, axis=1)].join(pd.DataFrame('a<->b', index=a.index, columns=['a<=>b'])).join(
        b[a != b][np.any(a != b, axis=1)]
        ,rsuffix='_b', how='outer'
).fillna('')完整的演示示例:
import numpy as np, pandas as pd
a = pd.DataFrame(np.random.randn(7,3), columns=list('ABC'))
b = a.copy()
b.iloc[0,2] = np.nan
b.iloc[1,0] = 7
b.iloc[3,1] = 77
b.iloc[4,2] = 777
a[a != b][np.any(a != b, axis=1)].join(pd.DataFrame('a<->b', index=a.index, columns=['a<=>b'])).join(
        b[a != b][np.any(a != b, axis=1)]
        ,rsuffix='_b', how='outer'
).fillna('')回答 9
这是使用选择并合并的另一种方法:
In [6]: # first lets create some dummy dataframes with some column(s) different
   ...: df1 = pd.DataFrame({'a': range(-5,0), 'b': range(10,15), 'c': range(20,25)})
   ...: df2 = pd.DataFrame({'a': range(-5,0), 'b': range(10,15), 'c': [20] + list(range(101,105))})
In [7]: df1
Out[7]:
   a   b   c
0 -5  10  20
1 -4  11  21
2 -3  12  22
3 -2  13  23
4 -1  14  24
In [8]: df2
Out[8]:
   a   b    c
0 -5  10   20
1 -4  11  101
2 -3  12  102
3 -2  13  103
4 -1  14  104
In [10]: # make condition over the columns you want to comapre
    ...: condition = df1['c'] != df2['c']
    ...:
    ...: # select rows from each dataframe where the condition holds
    ...: diff1 = df1[condition]
    ...: diff2 = df2[condition]
In [11]: # merge the selected rows (dataframes) with some suffixes (optional)
    ...: diff1.merge(diff2, on=['a','b'], suffixes=('_before', '_after'))
Out[11]:
   a   b  c_before  c_after
0 -4  11        21      101
1 -3  12        22      102
2 -2  13        23      103
3 -1  14        24      104这是Jupyter屏幕截图中的相同内容:
回答 10
大熊猫> = 1.1: DataFrame.compare
使用pandas 1.1,您基本上可以通过一个函数调用来复制Ted Petrou的输出。来自文档的示例:
pd.__version__
# '1.1.0.dev0+2004.g8d10bfb6f'
df1.compare(df2)
  score       isEnrolled       Comment             
   self other       self other    self        other
1  1.11  1.21        NaN   NaN     NaN          NaN
2   NaN   NaN        1.0   0.0     NaN  On vacation此处,“自身”是指LHS数据帧,而“其他”是指RHS数据帧。默认情况下,相等值将替换为NaN,因此您可以仅关注差异。如果要显示相等的值,请使用
df1.compare(df2, keep_equal=True, keep_shape=True) 
  score       isEnrolled           Comment             
   self other       self  other       self        other
1  1.11  1.21      False  False  Graduated    Graduated
2  4.12  4.12       True  False        NaN  On vacation您还可以使用align_axis以下方式更改比较轴:
df1.compare(df2, align_axis='index')
         score  isEnrolled      Comment
1 self    1.11         NaN          NaN
  other   1.21         NaN          NaN
2 self     NaN         1.0          NaN
  other    NaN         0.0  On vacation这将按行而不是按列比较值。
回答 11
查找两个数据帧之间不对称差异的函数在以下实现:(基于熊猫的集合差异)GIST:https : //gist.github.com/oneryalcin/68cf25f536a25e65f0b3c84f9c118e03
def diff_df(df1, df2, how="left"):
    """
      Find Difference of rows for given two dataframes
      this function is not symmetric, means
            diff(x, y) != diff(y, x)
      however
            diff(x, y, how='left') == diff(y, x, how='right')
      Ref: /programming/18180763/set-difference-for-pandas/40209800#40209800
    """
    if (df1.columns != df2.columns).any():
        raise ValueError("Two dataframe columns must match")
    if df1.equals(df2):
        return None
    elif how == 'right':
        return pd.concat([df2, df1, df1]).drop_duplicates(keep=False)
    elif how == 'left':
        return pd.concat([df1, df2, df2]).drop_duplicates(keep=False)
    else:
        raise ValueError('how parameter supports only "left" or "right keywords"')例:
df1 = pd.DataFrame(d1)
Out[1]: 
                Comment  Name  isEnrolled  score
0  He was late to class  Jack        True   2.17
1             Graduated  Nick       False   1.11
2                         Zoe        True   4.12
df2 = pd.DataFrame(d2)
Out[2]: 
                Comment  Name  isEnrolled  score
0  He was late to class  Jack        True   2.17
1           On vacation   Zoe        True   4.12
diff_df(df1, df2)
Out[3]: 
     Comment  Name  isEnrolled  score
1  Graduated  Nick       False   1.11
2              Zoe        True   4.12
diff_df(df2, df1)
Out[4]: 
       Comment Name  isEnrolled  score
1  On vacation  Zoe        True   4.12
# This gives the same result as above
diff_df(df1, df2, how='right')
Out[22]: 
       Comment Name  isEnrolled  score
1  On vacation  Zoe        True   4.12回答 12
将pda导入为pd将numpy导入为np
df = pd.read_excel(’D:\ HARISH \ DATA SCIENCE \ 1 MY Training \ SAMPLE DATA&PROJS \ CRICKET DATA \ IPL PLAYER LIST \ IPL PLAYER LIST _ harish.xlsx’)
df1 = srh = df [df [‘TEAM’]。str.contains(“ SRH”)] df2 = csk = df [df [‘TEAM’]。str.contains(“ CSK”)]
srh = srh.iloc [:,0:2] csk = csk.iloc [:,0:2]
csk = csk.reset_index(drop = True)csk
srh = srh.reset_index(drop = True)srh
new = pd.concat([srh,csk],axis = 1)
new.head()
**玩家类型玩家类型
0戴维·华纳·蝙蝠侠… MS Dhoni Captain
1布瓦内什瓦尔·库马尔·鲍勒(Bhuvaneshwar Kumar Bowler)…
2 Manish Pandey击球手… Suresh Raina All-Rounder
3拉希德·汗·阿曼·鲍勒(Kashir Jadhav All-Rounder)
4 Shikhar Dhawan击球手…. Dwayne Bravo All-Rounder





