问题:熊猫将某些列转换为行
因此我的数据集具有n个日期的位置信息。问题在于每个日期实际上是一个不同的列标题。例如,CSV看起来像
location name Jan-2010 Feb-2010 March-2010
A "test" 12 20 30
B "foo" 18 20 25
我想要的是它看起来像
location name Date Value
A "test" Jan-2010 12
A "test" Feb-2010 20
A "test" March-2010 30
B "foo" Jan-2010 18
B "foo" Feb-2010 20
B "foo" March-2010 25
问题是我不知道列中有多少个日期(尽管我知道它们总是以名字开头)
回答 0
UPDATE
从v0.20开始,它melt
是一阶函数,您现在可以使用
df.melt(id_vars=["location", "name"],
var_name="Date",
value_name="Value")
location name Date Value
0 A "test" Jan-2010 12
1 B "foo" Jan-2010 18
2 A "test" Feb-2010 20
3 B "foo" Feb-2010 20
4 A "test" March-2010 30
5 B "foo" March-2010 25
旧版(ER):<0.20
您可以使用pd.melt
来获取大部分信息,然后进行排序:
>>> df
location name Jan-2010 Feb-2010 March-2010
0 A test 12 20 30
1 B foo 18 20 25
>>> df2 = pd.melt(df, id_vars=["location", "name"],
var_name="Date", value_name="Value")
>>> df2
location name Date Value
0 A test Jan-2010 12
1 B foo Jan-2010 18
2 A test Feb-2010 20
3 B foo Feb-2010 20
4 A test March-2010 30
5 B foo March-2010 25
>>> df2 = df2.sort(["location", "name"])
>>> df2
location name Date Value
0 A test Jan-2010 12
2 A test Feb-2010 20
4 A test March-2010 30
1 B foo Jan-2010 18
3 B foo Feb-2010 20
5 B foo March-2010 25
(可能想输入.reset_index(drop=True)
,只是为了保持输出清洁。)
注:pd.DataFrame.sort
已弃用赞成pd.DataFrame.sort_values
。
回答 1
使用set_index
与stack
对MultiIndex Series
,然后DataFrame
加reset_index
用rename
:
df1 = (df.set_index(["location", "name"])
.stack()
.reset_index(name='Value')
.rename(columns={'level_2':'Date'}))
print (df1)
location name Date Value
0 A test Jan-2010 12
1 A test Feb-2010 20
2 A test March-2010 30
3 B foo Jan-2010 18
4 B foo Feb-2010 20
5 B foo March-2010 25
回答 2
我想我找到了一个更简单的解决方案
temp1 = pd.melt(df1, id_vars=["location"], var_name='Date', value_name='Value')
temp2 = pd.melt(df1, id_vars=["name"], var_name='Date', value_name='Value')
Concat temp1
与temp2
的专栏name
temp1['new_column'] = temp2['name']
现在,您有了所需的东西。
回答 3
pd.wide_to_long
您可以在年份列中添加前缀,然后直接输入pd.wide_to_long
。我不会假装这是有效的,但是在某些情况下,它可能比方便pd.melt
,例如,当您的列已经具有适当的前缀时。
df.columns = np.hstack((df.columns[:2], df.columns[2:].map(lambda x: f'Value{x}')))
res = pd.wide_to_long(df, stubnames=['Value'], i='name', j='Date').reset_index()\
.sort_values(['location', 'name'])
print(res)
name Date location Value
0 test Jan-2010 A 12
2 test Feb-2010 A 20
4 test March-2010 A 30
1 foo Jan-2010 B 18
3 foo Feb-2010 B 20
5 foo March-2010 B 25