问题:熊猫有条件地创建系列/数据框列
我有下面的数据框:
Type Set
1 A Z
2 B Z
3 B X
4 C Y
我想向数据框添加另一列(或生成一系列),该列的长度与数据框的长度相同(=记录/行的数目相等),如果Set =’Z’则设置为绿色,如果Set =’否则为’red’ 。
最好的方法是什么?
I have a dataframe along the lines of the below:
Type Set
1 A Z
2 B Z
3 B X
4 C Y
I want to add another column to the dataframe (or generate a series) of the same length as the dataframe (equal number of records/rows) which sets a colour 'green'
if Set == 'Z'
and 'red'
if Set
equals anything else.
What’s the best way to do this?
回答 0
如果您只有两个选择供您选择:
df['color'] = np.where(df['Set']=='Z', 'green', 'red')
例如,
import pandas as pd
import numpy as np
df = pd.DataFrame({'Type':list('ABBC'), 'Set':list('ZZXY')})
df['color'] = np.where(df['Set']=='Z', 'green', 'red')
print(df)
Yield
Set Type color
0 Z A green
1 Z B green
2 X B red
3 Y C red
如果您有两个以上的条件,请使用。例如,如果您想color
成为
yellow
什么时候 (df['Set'] == 'Z') & (df['Type'] == 'A')
- 否则
blue
,当(df['Set'] == 'Z') & (df['Type'] == 'B')
- 否则
purple
,当(df['Type'] == 'B')
- 否则
black
,
然后使用
df = pd.DataFrame({'Type':list('ABBC'), 'Set':list('ZZXY')})
conditions = [
(df['Set'] == 'Z') & (df['Type'] == 'A'),
(df['Set'] == 'Z') & (df['Type'] == 'B'),
(df['Type'] == 'B')]
choices = ['yellow', 'blue', 'purple']
df['color'] = np.select(conditions, choices, default='black')
print(df)
产生
Set Type color
0 Z A yellow
1 Z B blue
2 X B purple
3 Y C black
If you only have two choices to select from:
df['color'] = np.where(df['Set']=='Z', 'green', 'red')
For example,
import pandas as pd
import numpy as np
df = pd.DataFrame({'Type':list('ABBC'), 'Set':list('ZZXY')})
df['color'] = np.where(df['Set']=='Z', 'green', 'red')
print(df)
yields
Set Type color
0 Z A green
1 Z B green
2 X B red
3 Y C red
If you have more than two conditions then use . For example, if you want color
to be
yellow
when (df['Set'] == 'Z') & (df['Type'] == 'A')
- otherwise
blue
when (df['Set'] == 'Z') & (df['Type'] == 'B')
- otherwise
purple
when (df['Type'] == 'B')
- otherwise
black
,
then use
df = pd.DataFrame({'Type':list('ABBC'), 'Set':list('ZZXY')})
conditions = [
(df['Set'] == 'Z') & (df['Type'] == 'A'),
(df['Set'] == 'Z') & (df['Type'] == 'B'),
(df['Type'] == 'B')]
choices = ['yellow', 'blue', 'purple']
df['color'] = np.select(conditions, choices, default='black')
print(df)
which yields
Set Type color
0 Z A yellow
1 Z B blue
2 X B purple
3 Y C black
回答 1
列表理解是有条件创建另一列的另一种方法。如果像在示例中那样使用列中的对象dtype,则列表理解通常胜过大多数其他方法。
示例列表理解:
df['color'] = ['red' if x == 'Z' else 'green' for x in df['Set']]
%timeit测试:
import pandas as pd
import numpy as np
df = pd.DataFrame({'Type':list('ABBC'), 'Set':list('ZZXY')})
%timeit df['color'] = ['red' if x == 'Z' else 'green' for x in df['Set']]
%timeit df['color'] = np.where(df['Set']=='Z', 'green', 'red')
%timeit df['color'] = df.Set.map( lambda x: 'red' if x == 'Z' else 'green')
1000 loops, best of 3: 239 µs per loop
1000 loops, best of 3: 523 µs per loop
1000 loops, best of 3: 263 µs per loop
List comprehension is another way to create another column conditionally. If you are working with object dtypes in columns, like in your example, list comprehensions typically outperform most other methods.
Example list comprehension:
df['color'] = ['red' if x == 'Z' else 'green' for x in df['Set']]
%timeit tests:
import pandas as pd
import numpy as np
df = pd.DataFrame({'Type':list('ABBC'), 'Set':list('ZZXY')})
%timeit df['color'] = ['red' if x == 'Z' else 'green' for x in df['Set']]
%timeit df['color'] = np.where(df['Set']=='Z', 'green', 'red')
%timeit df['color'] = df.Set.map( lambda x: 'red' if x == 'Z' else 'green')
1000 loops, best of 3: 239 µs per loop
1000 loops, best of 3: 523 µs per loop
1000 loops, best of 3: 263 µs per loop
回答 2
可以实现这一目标的另一种方法是
df['color'] = df.Set.map( lambda x: 'red' if x == 'Z' else 'green')
Another way in which this could be achieved is
df['color'] = df.Set.map( lambda x: 'red' if x == 'Z' else 'green')
回答 3
这是给这只猫换皮的另一种方法,使用字典将新值映射到列表中的键上:
def map_values(row, values_dict):
return values_dict[row]
values_dict = {'A': 1, 'B': 2, 'C': 3, 'D': 4}
df = pd.DataFrame({'INDICATOR': ['A', 'B', 'C', 'D'], 'VALUE': [10, 9, 8, 7]})
df['NEW_VALUE'] = df['INDICATOR'].apply(map_values, args = (values_dict,))
看起来像什么:
df
Out[2]:
INDICATOR VALUE NEW_VALUE
0 A 10 1
1 B 9 2
2 C 8 3
3 D 7 4
当您要执行许多ifelse
-type语句(即要替换的许多唯一值)时,此方法可能非常强大。
当然,您可以始终这样做:
df['NEW_VALUE'] = df['INDICATOR'].map(values_dict)
但是apply
在我的机器上,这种方法的速度是上面的方法的三倍以上。
您也可以使用dict.get
:
df['NEW_VALUE'] = [values_dict.get(v, None) for v in df['INDICATOR']]
Here’s yet another way to skin this cat, using a dictionary to map new values onto the keys in the list:
def map_values(row, values_dict):
return values_dict[row]
values_dict = {'A': 1, 'B': 2, 'C': 3, 'D': 4}
df = pd.DataFrame({'INDICATOR': ['A', 'B', 'C', 'D'], 'VALUE': [10, 9, 8, 7]})
df['NEW_VALUE'] = df['INDICATOR'].apply(map_values, args = (values_dict,))
What’s it look like:
df
Out[2]:
INDICATOR VALUE NEW_VALUE
0 A 10 1
1 B 9 2
2 C 8 3
3 D 7 4
This approach can be very powerful when you have many ifelse
-type statements to make (i.e. many unique values to replace).
And of course you could always do this:
df['NEW_VALUE'] = df['INDICATOR'].map(values_dict)
But that approach is more than three times as slow as the apply
approach from above, on my machine.
And you could also do this, using dict.get
:
df['NEW_VALUE'] = [values_dict.get(v, None) for v in df['INDICATOR']]
回答 4
以下内容比此处介绍的方法要慢,但是我们可以根据多于一列的内容来计算额外的列,并且可以为额外的列计算两个以上的值。
仅使用“设置”列的简单示例:
def set_color(row):
if row["Set"] == "Z":
return "red"
else:
return "green"
df = df.assign(color=df.apply(set_color, axis=1))
print(df)
Set Type color
0 Z A red
1 Z B red
2 X B green
3 Y C green
具有更多颜色和更多列的示例:
def set_color(row):
if row["Set"] == "Z":
return "red"
elif row["Type"] == "C":
return "blue"
else:
return "green"
df = df.assign(color=df.apply(set_color, axis=1))
print(df)
Set Type color
0 Z A red
1 Z B red
2 X B green
3 Y C blue
编辑(21/06/2019):使用plydata
也可以使用plydata来执行这种操作(尽管这似乎比使用assign
and 还要慢apply
)。
from plydata import define, if_else
简单if_else
:
df = define(df, color=if_else('Set=="Z"', '"red"', '"green"'))
print(df)
Set Type color
0 Z A red
1 Z B red
2 X B green
3 Y C green
嵌套if_else
:
df = define(df, color=if_else(
'Set=="Z"',
'"red"',
if_else('Type=="C"', '"green"', '"blue"')))
print(df)
Set Type color
0 Z A red
1 Z B red
2 X B blue
3 Y C green
The following is slower than the approaches timed here, but we can compute the extra column based on the contents of more than one column, and more than two values can be computed for the extra column.
Simple example using just the “Set” column:
def set_color(row):
if row["Set"] == "Z":
return "red"
else:
return "green"
df = df.assign(color=df.apply(set_color, axis=1))
print(df)
Set Type color
0 Z A red
1 Z B red
2 X B green
3 Y C green
Example with more colours and more columns taken into account:
def set_color(row):
if row["Set"] == "Z":
return "red"
elif row["Type"] == "C":
return "blue"
else:
return "green"
df = df.assign(color=df.apply(set_color, axis=1))
print(df)
Set Type color
0 Z A red
1 Z B red
2 X B green
3 Y C blue
Edit (21/06/2019): Using plydata
It is also possible to use plydata to do this kind of things (this seems even slower than using assign
and apply
, though).
from plydata import define, if_else
Simple if_else
:
df = define(df, color=if_else('Set=="Z"', '"red"', '"green"'))
print(df)
Set Type color
0 Z A red
1 Z B red
2 X B green
3 Y C green
Nested if_else
:
df = define(df, color=if_else(
'Set=="Z"',
'"red"',
if_else('Type=="C"', '"green"', '"blue"')))
print(df)
Set Type color
0 Z A red
1 Z B red
2 X B blue
3 Y C green
回答 5
也许是通过更新Pandas来实现的,但到目前为止,我认为以下是该问题的最短和最佳答案。您可以使用该.loc
方法,并根据需要使用一个或多个条件。
代码摘要:
df=pd.DataFrame(dict(Type='A B B C'.split(), Set='Z Z X Y'.split()))
df['Color'] = "red"
df.loc[(df['Set']=="Z"), 'Color'] = "green"
#practice!
df.loc[(df['Set']=="Z")&(df['Type']=="B")|(df['Type']=="C"), 'Color'] = "purple"
说明:
df=pd.DataFrame(dict(Type='A B B C'.split(), Set='Z Z X Y'.split()))
# df so far:
Type Set
0 A Z
1 B Z
2 B X
3 C Y
添加“颜色”列并将所有值设置为“红色”
df['Color'] = "red"
应用您的单个条件:
df.loc[(df['Set']=="Z"), 'Color'] = "green"
# df:
Type Set Color
0 A Z green
1 B Z green
2 B X red
3 C Y red
或多个条件(如果需要):
df.loc[(df['Set']=="Z")&(df['Type']=="B")|(df['Type']=="C"), 'Color'] = "purple"
您可以在此处阅读Pandas逻辑运算符和条件选择: Pandas中用于布尔索引的逻辑运算符
Maybe this has been possible with newer updates of Pandas (tested with pandas=1.0.5), but I think the following is the shortest and maybe best answer for the question, so far. You can use the .loc
method and use one condition or several depending on your need.
Code Summary:
df=pd.DataFrame(dict(Type='A B B C'.split(), Set='Z Z X Y'.split()))
df['Color'] = "red"
df.loc[(df['Set']=="Z"), 'Color'] = "green"
#practice!
df.loc[(df['Set']=="Z")&(df['Type']=="B")|(df['Type']=="C"), 'Color'] = "purple"
Explanation:
df=pd.DataFrame(dict(Type='A B B C'.split(), Set='Z Z X Y'.split()))
# df so far:
Type Set
0 A Z
1 B Z
2 B X
3 C Y
add a ‘color’ column and set all values to “red”
df['Color'] = "red"
Apply your single condition:
df.loc[(df['Set']=="Z"), 'Color'] = "green"
# df:
Type Set Color
0 A Z green
1 B Z green
2 B X red
3 C Y red
or multiple conditions if you want:
df.loc[(df['Set']=="Z")&(df['Type']=="B")|(df['Type']=="C"), 'Color'] = "purple"
You can read on Pandas logical operators and conditional selection here: Logical operators for boolean indexing in Pandas
回答 6
一种带有.apply()
方法的衬纸如下:
df['color'] = df['Set'].apply(lambda set_: 'green' if set_=='Z' else 'red')
之后,df
数据帧如下所示:
>>> print(df)
Type Set color
0 A Z green
1 B Z green
2 B X red
3 C Y red
One liner with .apply()
method is following:
df['color'] = df['Set'].apply(lambda set_: 'green' if set_=='Z' else 'red')
After that, df
data frame looks like this:
>>> print(df)
Type Set color
0 A Z green
1 B Z green
2 B X red
3 C Y red
回答 7
如果您要处理海量数据,则最好采用记忆方式:
# First create a dictionary of manually stored values
color_dict = {'Z':'red'}
# Second, build a dictionary of "other" values
color_dict_other = {x:'green' for x in df['Set'].unique() if x not in color_dict.keys()}
# Next, merge the two
color_dict.update(color_dict_other)
# Finally, map it to your column
df['color'] = df['Set'].map(color_dict)
当您有很多重复的值时,这种方法将是最快的。我的一般经验法则是记住以下情况:data_size
> 10**4
&n_distinct
<data_size/4
例如,在10,000行中记录2,500个或更少的不同值。
If you’re working with massive data, a memoized approach would be best:
# First create a dictionary of manually stored values
color_dict = {'Z':'red'}
# Second, build a dictionary of "other" values
color_dict_other = {x:'green' for x in df['Set'].unique() if x not in color_dict.keys()}
# Next, merge the two
color_dict.update(color_dict_other)
# Finally, map it to your column
df['color'] = df['Set'].map(color_dict)
This approach will be fastest when you have many repeated values. My general rule of thumb is to memoize when: data_size
> 10**4
& n_distinct
< data_size/4
E.x. Memoize in a case 10,000 rows with 2,500 or fewer distinct values.
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。