问题:熊猫:求和给定列的DataFrame行
我有以下DataFrame:
In [1]:
import pandas as pd
df = pd.DataFrame({'a': [1,2,3], 'b': [2,3,4], 'c':['dd','ee','ff'], 'd':[5,9,1]})
df
Out [1]:
a b c d
0 1 2 dd 5
1 2 3 ee 9
2 3 4 ff 1
我想增加一列'e'
是列的总和'a'
,'b'
和'd'
。
在各个论坛上,我认为这样会起作用:
df['e'] = df[['a','b','d']].map(sum)
但事实并非如此。
我想知道适当的操作与列的列表['a','b','d']
和df
作为输入。
回答 0
您可以sum
设置参数axis=1
以对行求和,这将忽略任何数字列:
In [91]:
df = pd.DataFrame({'a': [1,2,3], 'b': [2,3,4], 'c':['dd','ee','ff'], 'd':[5,9,1]})
df['e'] = df.sum(axis=1)
df
Out[91]:
a b c d e
0 1 2 dd 5 8
1 2 3 ee 9 14
2 3 4 ff 1 8
如果您只想汇总特定的列,则可以创建列的列表并删除不感兴趣的列:
In [98]:
col_list= list(df)
col_list.remove('d')
col_list
Out[98]:
['a', 'b', 'c']
In [99]:
df['e'] = df[col_list].sum(axis=1)
df
Out[99]:
a b c d e
0 1 2 dd 5 3
1 2 3 ee 9 5
2 3 4 ff 1 7
回答 1
如果您只需要汇总几列,则可以编写:
df['e'] = df['a'] + df['b'] + df['d']
这将创建e
具有以下值的新列:
a b c d e
0 1 2 dd 5 8
1 2 3 ee 9 14
2 3 4 ff 1 8
对于较长的列列表,首选EdChum的答案。
回答 2
创建要添加的列名列表。
df['total']=df.loc[:,list_name].sum(axis=1)
如果要某些行的总和,请使用“:”指定行
回答 3
这是使用iloc选择要累加的列的更简单方法:
df['f']=df.iloc[:,0:2].sum(axis=1)
df['g']=df.iloc[:,[0,1]].sum(axis=1)
df['h']=df.iloc[:,[0,3]].sum(axis=1)
生成:
a b c d e f g h
0 1 2 dd 5 8 3 3 6
1 2 3 ee 9 14 5 5 11
2 3 4 ff 1 8 7 7 4
我找不到一种将范围和特定列结合起来的方法,例如:
df['i']=df.iloc[:,[[0:2],3]].sum(axis=1)
df['i']=df.iloc[:,[0:2,3]].sum(axis=1)
回答 4
当我按顺序排列列时,以下语法对我有帮助
awards_frame.values[:,1:4].sum(axis =1)
回答 5
您只需将数据框传递给以下函数即可:
def sum_frame_by_column(frame, new_col_name, list_of_cols_to_sum):
frame[new_col_name] = frame[list_of_cols_to_sum].astype(float).sum(axis=1)
return(frame)
范例:
我有一个数据框(awards_frame)如下:
…并且我想创建一个新列,显示每一行的奖励总和:
用法:
我只是通过我的awards_frame进入功能,同时指定名称的新列的,和列表将被归纳列名:
sum_frame_by_column(awards_frame, 'award_sum', ['award_1','award_2','award_3'])
结果:
回答 6
这里最简单的方法是使用
df.eval('e = a + b + d')
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。