In [1]:
import pandas as pd
df = pd.DataFrame({'a': [1,2,3], 'b': [2,3,4], 'c':['dd','ee','ff'], 'd':[5,9,1]})
df
Out [1]:
a b c d
0 1 2 dd 5
1 2 3 ee 9
2 3 4 ff 1
I would like to add a column 'e' which is the sum of column 'a', 'b' and 'd'.
Going across forums, I thought something like this would work:
df['e'] = df[['a','b','d']].map(sum)
But it didn’t.
I would like to know the appropriate operation with the list of columns ['a','b','d'] and df as inputs.
回答 0
您可以sum设置参数axis=1以对行求和,这将忽略任何数字列:
In[91]:
df = pd.DataFrame({'a':[1,2,3],'b':[2,3,4],'c':['dd','ee','ff'],'d':[5,9,1]})
df['e']= df.sum(axis=1)
df
Out[91]:
a b c d e
012 dd 58123 ee 914234 ff 18
如果您只想汇总特定的列,则可以创建列的列表并删除不感兴趣的列:
In[98]:
col_list= list(df)
col_list.remove('d')
col_list
Out[98]:['a','b','c']In[99]:
df['e']= df[col_list].sum(axis=1)
df
Out[99]:
a b c d e
012 dd 53123 ee 95234 ff 17
You can just sum and set param axis=1 to sum the rows, this will ignore none numeric columns:
In [91]:
df = pd.DataFrame({'a': [1,2,3], 'b': [2,3,4], 'c':['dd','ee','ff'], 'd':[5,9,1]})
df['e'] = df.sum(axis=1)
df
Out[91]:
a b c d e
0 1 2 dd 5 8
1 2 3 ee 9 14
2 3 4 ff 1 8
If you want to just sum specific columns then you can create a list of the columns and remove the ones you are not interested in:
In [98]:
col_list= list(df)
col_list.remove('d')
col_list
Out[98]:
['a', 'b', 'c']
In [99]:
df['e'] = df[col_list].sum(axis=1)
df
Out[99]:
a b c d e
0 1 2 dd 5 3
1 2 3 ee 9 5
2 3 4 ff 1 7