问题:熊猫:选择所有名称以X开头的列的最佳方法

我有一个DataFrame:

import pandas as pd
import numpy as np

df = pd.DataFrame({'foo.aa': [1, 2.1, np.nan, 4.7, 5.6, 6.8],
                   'foo.fighters': [0, 1, np.nan, 0, 0, 0],
                   'foo.bars': [0, 0, 0, 0, 0, 1],
                   'bar.baz': [5, 5, 6, 5, 5.6, 6.8],
                   'foo.fox': [2, 4, 1, 0, 0, 5],
                   'nas.foo': ['NA', 0, 1, 0, 0, 0],
                   'foo.manchu': ['NA', 0, 0, 0, 0, 0],})

我想在以开头的列中选择1的值foo.。除了以下以外,还有更好的方法吗:

df2 = df[(df['foo.aa'] == 1)|
(df['foo.fighters'] == 1)|
(df['foo.bars'] == 1)|
(df['foo.fox'] == 1)|
(df['foo.manchu'] == 1)
]

类似于写类似的东西:

df2= df[df.STARTS_WITH_FOO == 1]

答案应打印出如下所示的DataFrame:

   bar.baz  foo.aa  foo.bars  foo.fighters  foo.fox foo.manchu nas.foo
0      5.0     1.0         0             0        2         NA      NA
1      5.0     2.1         0             1        4          0       0
2      6.0     NaN         0           NaN        1          0       1
5      6.8     6.8         1             0        5          0       0

[4 rows x 7 columns]

I have a DataFrame:

import pandas as pd
import numpy as np

df = pd.DataFrame({'foo.aa': [1, 2.1, np.nan, 4.7, 5.6, 6.8],
                   'foo.fighters': [0, 1, np.nan, 0, 0, 0],
                   'foo.bars': [0, 0, 0, 0, 0, 1],
                   'bar.baz': [5, 5, 6, 5, 5.6, 6.8],
                   'foo.fox': [2, 4, 1, 0, 0, 5],
                   'nas.foo': ['NA', 0, 1, 0, 0, 0],
                   'foo.manchu': ['NA', 0, 0, 0, 0, 0],})

I want to select values of 1 in columns starting with foo.. Is there a better way to do it other than:

df2 = df[(df['foo.aa'] == 1)|
(df['foo.fighters'] == 1)|
(df['foo.bars'] == 1)|
(df['foo.fox'] == 1)|
(df['foo.manchu'] == 1)
]

Something similar to writing something like:

df2= df[df.STARTS_WITH_FOO == 1]

The answer should print out a DataFrame like this:

   bar.baz  foo.aa  foo.bars  foo.fighters  foo.fox foo.manchu nas.foo
0      5.0     1.0         0             0        2         NA      NA
1      5.0     2.1         0             1        4          0       0
2      6.0     NaN         0           NaN        1          0       1
5      6.8     6.8         1             0        5          0       0

[4 rows x 7 columns]

回答 0

只需执行列表推导即可创建您的列:

In [28]:

filter_col = [col for col in df if col.startswith('foo')]
filter_col
Out[28]:
['foo.aa', 'foo.bars', 'foo.fighters', 'foo.fox', 'foo.manchu']
In [29]:

df[filter_col]
Out[29]:
   foo.aa  foo.bars  foo.fighters  foo.fox foo.manchu
0     1.0         0             0        2         NA
1     2.1         0             1        4          0
2     NaN         0           NaN        1          0
3     4.7         0             0        0          0
4     5.6         0             0        0          0
5     6.8         1             0        5          0

另一种方法是从列创建序列,并使用向量化str方法startswith

In [33]:

df[df.columns[pd.Series(df.columns).str.startswith('foo')]]
Out[33]:
   foo.aa  foo.bars  foo.fighters  foo.fox foo.manchu
0     1.0         0             0        2         NA
1     2.1         0             1        4          0
2     NaN         0           NaN        1          0
3     4.7         0             0        0          0
4     5.6         0             0        0          0
5     6.8         1             0        5          0

为了实现您想要的目标,您需要添加以下内容以过滤不符合您的==1条件的值:

In [36]:

df[df[df.columns[pd.Series(df.columns).str.startswith('foo')]]==1]
Out[36]:
   bar.baz  foo.aa  foo.bars  foo.fighters  foo.fox foo.manchu nas.foo
0      NaN       1       NaN           NaN      NaN        NaN     NaN
1      NaN     NaN       NaN             1      NaN        NaN     NaN
2      NaN     NaN       NaN           NaN        1        NaN     NaN
3      NaN     NaN       NaN           NaN      NaN        NaN     NaN
4      NaN     NaN       NaN           NaN      NaN        NaN     NaN
5      NaN     NaN         1           NaN      NaN        NaN     NaN

编辑

看到您想要复杂的答案后,确定为:

In [72]:

df.loc[df[df[df.columns[pd.Series(df.columns).str.startswith('foo')]] == 1].dropna(how='all', axis=0).index]
Out[72]:
   bar.baz  foo.aa  foo.bars  foo.fighters  foo.fox foo.manchu nas.foo
0      5.0     1.0         0             0        2         NA      NA
1      5.0     2.1         0             1        4          0       0
2      6.0     NaN         0           NaN        1          0       1
5      6.8     6.8         1             0        5          0       0

Just perform a list comprehension to create your columns:

In [28]:

filter_col = [col for col in df if col.startswith('foo')]
filter_col
Out[28]:
['foo.aa', 'foo.bars', 'foo.fighters', 'foo.fox', 'foo.manchu']
In [29]:

df[filter_col]
Out[29]:
   foo.aa  foo.bars  foo.fighters  foo.fox foo.manchu
0     1.0         0             0        2         NA
1     2.1         0             1        4          0
2     NaN         0           NaN        1          0
3     4.7         0             0        0          0
4     5.6         0             0        0          0
5     6.8         1             0        5          0

Another method is to create a series from the columns and use the vectorised str method startswith:

In [33]:

df[df.columns[pd.Series(df.columns).str.startswith('foo')]]
Out[33]:
   foo.aa  foo.bars  foo.fighters  foo.fox foo.manchu
0     1.0         0             0        2         NA
1     2.1         0             1        4          0
2     NaN         0           NaN        1          0
3     4.7         0             0        0          0
4     5.6         0             0        0          0
5     6.8         1             0        5          0

In order to achieve what you want you need to add the following to filter the values that don’t meet your ==1 criteria:

In [36]:

df[df[df.columns[pd.Series(df.columns).str.startswith('foo')]]==1]
Out[36]:
   bar.baz  foo.aa  foo.bars  foo.fighters  foo.fox foo.manchu nas.foo
0      NaN       1       NaN           NaN      NaN        NaN     NaN
1      NaN     NaN       NaN             1      NaN        NaN     NaN
2      NaN     NaN       NaN           NaN        1        NaN     NaN
3      NaN     NaN       NaN           NaN      NaN        NaN     NaN
4      NaN     NaN       NaN           NaN      NaN        NaN     NaN
5      NaN     NaN         1           NaN      NaN        NaN     NaN

EDIT

OK after seeing what you want the convoluted answer is this:

In [72]:

df.loc[df[df[df.columns[pd.Series(df.columns).str.startswith('foo')]] == 1].dropna(how='all', axis=0).index]
Out[72]:
   bar.baz  foo.aa  foo.bars  foo.fighters  foo.fox foo.manchu nas.foo
0      5.0     1.0         0             0        2         NA      NA
1      5.0     2.1         0             1        4          0       0
2      6.0     NaN         0           NaN        1          0       1
5      6.8     6.8         1             0        5          0       0

回答 1

既然熊猫的索引支持字符串操作,那么可以说选择以’foo’开头的列的最简单最好的方法就是:

df.loc[:, df.columns.str.startswith('foo')]

或者,您可以使用过滤列(或行)标签。要指定正则表达式以匹配以开头的名称foo.

>>> df.filter(regex=r'^foo\.', axis=1)
   foo.aa  foo.bars  foo.fighters  foo.fox foo.manchu
0     1.0         0             0        2         NA
1     2.1         0             1        4          0
2     NaN         0           NaN        1          0
3     4.7         0             0        0          0
4     5.6         0             0        0          0
5     6.8         1             0        5          0

要仅选择所需的行(包含1)和列,可以使用loc,使用filter(或任何其他方法)选择列,使用any

>>> df.loc[(df == 1).any(axis=1), df.filter(regex=r'^foo\.', axis=1).columns]
   foo.aa  foo.bars  foo.fighters  foo.fox foo.manchu
0     1.0         0             0        2         NA
1     2.1         0             1        4          0
2     NaN         0           NaN        1          0
5     6.8         1             0        5          0

Now that pandas’ indexes support string operations, arguably the simplest and best way to select columns beginning with ‘foo’ is just:

df.loc[:, df.columns.str.startswith('foo')]

Alternatively, you can filter column (or row) labels with . To specify a regular expression to match the names beginning with foo.:

>>> df.filter(regex=r'^foo\.', axis=1)
   foo.aa  foo.bars  foo.fighters  foo.fox foo.manchu
0     1.0         0             0        2         NA
1     2.1         0             1        4          0
2     NaN         0           NaN        1          0
3     4.7         0             0        0          0
4     5.6         0             0        0          0
5     6.8         1             0        5          0

To select only the required rows (containing a 1) and the columns, you can use loc, selecting the columns using filter (or any other method) and the rows using any:

>>> df.loc[(df == 1).any(axis=1), df.filter(regex=r'^foo\.', axis=1).columns]
   foo.aa  foo.bars  foo.fighters  foo.fox foo.manchu
0     1.0         0             0        2         NA
1     2.1         0             1        4          0
2     NaN         0           NaN        1          0
5     6.8         1             0        5          0

回答 2

最简单的方法是直接在列名上使用str,不需要 pd.Series

df.loc[:,df.columns.str.startswith("foo")]

The simplest way is to use str directly on column names, there is no need for pd.Series

df.loc[:,df.columns.str.startswith("foo")]



回答 3

根据@EdChum的答案,您可以尝试以下解决方案:

df[df.columns[pd.Series(df.columns).str.contains("foo")]]

万一并非您要选择的所有列都以开头,这将非常有用foo。此方法选择包含子字符串的所有列,foo并且可以将其放置在列名称的任何位置。

本质上,我替换.startswith().contains()

Based on @EdChum’s answer, you can try the following solution:

df[df.columns[pd.Series(df.columns).str.contains("foo")]]

This will be really helpful in case not all the columns you want to select start with foo. This method selects all the columns that contain the substring foo and it could be placed in at any point of a column’s name.

In essence, I replaced .startswith() with .contains().


回答 4

我的解决方案。性能可能会变慢:

a = pd.concat(df[df[c] == 1] for c in df.columns if c.startswith('foo'))
a.sort_index()


   bar.baz  foo.aa  foo.bars  foo.fighters  foo.fox foo.manchu nas.foo
0      5.0     1.0         0             0        2         NA      NA
1      5.0     2.1         0             1        4          0       0
2      6.0     NaN         0           NaN        1          0       1
5      6.8     6.8         1             0        5          0       0

My solution. It may be slower on performance:

a = pd.concat(df[df[c] == 1] for c in df.columns if c.startswith('foo'))
a.sort_index()


   bar.baz  foo.aa  foo.bars  foo.fighters  foo.fox foo.manchu nas.foo
0      5.0     1.0         0             0        2         NA      NA
1      5.0     2.1         0             1        4          0       0
2      6.0     NaN         0           NaN        1          0       1
5      6.8     6.8         1             0        5          0       0

回答 5

选择所需条目的另一种方法是使用map

df.loc[(df == 1).any(axis=1), df.columns.map(lambda x: x.startswith('foo'))]

这将为您提供包含的行的所有列1

   foo.aa  foo.bars  foo.fighters  foo.fox foo.manchu
0     1.0         0             0        2         NA
1     2.1         0             1        4          0
2     NaN         0           NaN        1          0
5     6.8         1             0        5          0

行选择是通过做

(df == 1).any(axis=1)

如@ajcr的答案,它为您提供:

0     True
1     True
2     True
3    False
4    False
5     True
dtype: bool

表示该行34不包含1和不会被选中。

选择是使用布尔索引完成的,如下所示:

df.columns.map(lambda x: x.startswith('foo'))

在上面的示例中,此返回

array([False,  True,  True,  True,  True,  True, False], dtype=bool)

因此,如果某列不是以开头fooFalse则返回该列,因此未选择该列。

如果您只想返回包含1-的所有行(如您期望的输出所示),则只需执行

df.loc[(df == 1).any(axis=1)]

哪个返回

   bar.baz  foo.aa  foo.bars  foo.fighters  foo.fox foo.manchu nas.foo
0      5.0     1.0         0             0        2         NA      NA
1      5.0     2.1         0             1        4          0       0
2      6.0     NaN         0           NaN        1          0       1
5      6.8     6.8         1             0        5          0       0

Another option for the selection of the desired entries is to use map:

df.loc[(df == 1).any(axis=1), df.columns.map(lambda x: x.startswith('foo'))]

which gives you all the columns for rows that contain a 1:

   foo.aa  foo.bars  foo.fighters  foo.fox foo.manchu
0     1.0         0             0        2         NA
1     2.1         0             1        4          0
2     NaN         0           NaN        1          0
5     6.8         1             0        5          0

The row selection is done by

(df == 1).any(axis=1)

as in @ajcr’s answer which gives you:

0     True
1     True
2     True
3    False
4    False
5     True
dtype: bool

meaning that row 3 and 4 do not contain a 1 and won’t be selected.

The selection of the columns is done using Boolean indexing like this:

df.columns.map(lambda x: x.startswith('foo'))

In the example above this returns

array([False,  True,  True,  True,  True,  True, False], dtype=bool)

So, if a column does not start with foo, False is returned and the column is therefore not selected.

If you just want to return all rows that contain a 1 – as your desired output suggests – you can simply do

df.loc[(df == 1).any(axis=1)]

which returns

   bar.baz  foo.aa  foo.bars  foo.fighters  foo.fox foo.manchu nas.foo
0      5.0     1.0         0             0        2         NA      NA
1      5.0     2.1         0             1        4          0       0
2      6.0     NaN         0           NaN        1          0       1
5      6.8     6.8         1             0        5          0       0

回答 6

您可以在此处尝试使用正则表达式来过滤以“ foo”开头的列

df.filter(regex='^foo*')

如果您需要在列中包含字符串foo,则

df.filter(regex='foo*')

将是适当的。

下一步,您可以使用

df[df.filter(regex='^foo*').values==1]

过滤掉“ foo *”列的值之一为1的行。

You can try the regex here to filter out the columns starting with “foo”

df.filter(regex='^foo*')

If you need to have the string foo in your column then

df.filter(regex='foo*')

would be appropriate.

For the next step, you can use

df[df.filter(regex='^foo*').values==1]

to filter out the rows where one of the values of ‘foo*’ column is 1.


回答 7

就我而言,我需要一个前缀列表

colsToScale=["production", "test", "development"]
dc[dc.columns[dc.columns.str.startswith(tuple(colsToScale))]]

In my case I needed a list of prefixes

colsToScale=["production", "test", "development"]
dc[dc.columns[dc.columns.str.startswith(tuple(colsToScale))]]

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。