问题:用Python哈希文件
我想让python读取EOF,这样我就可以获取适当的哈希,无论它是sha1还是md5。请帮忙。这是我到目前为止的内容:
import hashlib
inputFile = raw_input("Enter the name of the file:")
openedFile = open(inputFile)
readFile = openedFile.read()
md5Hash = hashlib.md5(readFile)
md5Hashed = md5Hash.hexdigest()
sha1Hash = hashlib.sha1(readFile)
sha1Hashed = sha1Hash.hexdigest()
print "File Name: %s" % inputFile
print "MD5: %r" % md5Hashed
print "SHA1: %r" % sha1Hashed
回答 0
TL; DR使用缓冲区不使用大量内存。
我相信,当我们考虑使用非常大的文件对内存的影响时,我们就陷入了问题的症结。我们不希望这个坏男孩为2 GB的文件流过2 gigs的ram,因此,正如pasztorpisti指出的那样,我们必须将那些较大的文件分块处理!
import sys
import hashlib
# BUF_SIZE is totally arbitrary, change for your app!
BUF_SIZE = 65536 # lets read stuff in 64kb chunks!
md5 = hashlib.md5()
sha1 = hashlib.sha1()
with open(sys.argv[1], 'rb') as f:
while True:
data = f.read(BUF_SIZE)
if not data:
break
md5.update(data)
sha1.update(data)
print("MD5: {0}".format(md5.hexdigest()))
print("SHA1: {0}".format(sha1.hexdigest()))
我们所做的是,随着hashlib方便的dandy update方法的进行,我们将以64kb的块更新这个坏男孩的哈希。这样,我们使用的内存就比一次哈希一个家伙所需的2gb少得多!
您可以使用以下方法进行测试:
$ mkfile 2g bigfile
$ python hashes.py bigfile
MD5: a981130cf2b7e09f4686dc273cf7187e
SHA1: 91d50642dd930e9542c39d36f0516d45f4e1af0d
$ md5 bigfile
MD5 (bigfile) = a981130cf2b7e09f4686dc273cf7187e
$ shasum bigfile
91d50642dd930e9542c39d36f0516d45f4e1af0d bigfile
希望有帮助!
右侧的链接问题中也概述了所有这些内容:在Python中获取大文件的MD5哈希
附录!
通常,在编写python时,它有助于养成遵循pep-8的习惯。例如,在python中,变量通常用下划线分隔而不是驼峰式。但这只是样式,除了必须阅读不良样式的人之外,没有人真正关心这些事情……这可能是您从现在开始阅读此代码的原因。
回答 1
为了正确有效地计算文件的哈希值(在Python 3中):
- 以二进制模式(即添加
'b'
到文件模式)打开文件,以避免字符编码和行尾转换问题。 - 不要将整个文件读到内存中,因为那样会浪费内存。而是逐块顺序读取它,并更新每个块的哈希值。
- 消除双重缓冲,即不使用缓冲的IO,因为我们已经使用了最佳的块大小。
- 使用
readinto()
以避免缓冲区翻腾。
例:
import hashlib
def sha256sum(filename):
h = hashlib.sha256()
b = bytearray(128*1024)
mv = memoryview(b)
with open(filename, 'rb', buffering=0) as f:
for n in iter(lambda : f.readinto(mv), 0):
h.update(mv[:n])
return h.hexdigest()
回答 2
我会简单地建议:
def get_digest(file_path):
h = hashlib.sha256()
with open(file_path, 'rb') as file:
while True:
# Reading is buffered, so we can read smaller chunks.
chunk = file.read(h.block_size)
if not chunk:
break
h.update(chunk)
return h.hexdigest()
这里所有其他答案似乎过于复杂。Python在读取时已经在缓冲(以理想的方式,或者如果您有更多有关基础存储的信息,则可以配置该缓冲),因此最好分块读取散列函数找到的理想值,这样可以使其更快或更省时地减少CPU占用计算哈希函数。因此,您可以使用Python缓冲并控制应该控制的内容,而不是禁用缓冲并尝试自己模拟它,即数据消费者可以找到理想的哈希块大小。
回答 3
我已经编写了一个模块,该模块能够使用不同的算法对大文件进行哈希处理。
pip3 install py_essentials
像这样使用模块:
from py_essentials import hashing as hs
hash = hs.fileChecksum("path/to/the/file.txt", "sha256")
回答 4
这是Python 3,POSIX解决方案(不是Windows!),用于mmap
将对象映射到内存中。
import hashlib
import mmap
def sha256sum(filename):
h = hashlib.sha256()
with open(filename, 'rb') as f:
with mmap.mmap(f.fileno(), 0, prot=mmap.PROT_READ) as mm:
h.update(mm)
return h.hexdigest()
回答 5
import hashlib
user = input("Enter ")
h = hashlib.md5(user.encode())
h2 = h.hexdigest()
with open("encrypted.txt","w") as e:
print(h2,file=e)
with open("encrypted.txt","r") as e:
p = e.readline().strip()
print(p)
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。