What is the purpose of the self word in Python? I understand it refers to the specific object created from that class, but I can’t see why it explicitly needs to be added to every function as a parameter. To illustrate, in Ruby I can do this:
class myClass
def myFunc(name)
@name = name
end
end
Which I understand, quite easily. However in Python I need to include self:
class myClass:
def myFunc(self, name):
self.name = name
Can anyone talk me through this? It is not something I’ve come across in my (admittedly limited) experience.
The reason you need to use self. is because Python does not use the @ syntax to refer to instance attributes. Python decided to do methods in a way that makes the instance to which the method belongs be passed automatically, but not received automatically: the first parameter of methods is the instance the method is called on. That makes methods entirely the same as functions, and leaves the actual name to use up to you (although self is the convention, and people will generally frown at you when you use something else.) self is not special to the code, it’s just another object.
Python could have done something else to distinguish normal names from attributes — special syntax like Ruby has, or requiring declarations like C++ and Java do, or perhaps something yet more different — but it didn’t. Python’s all for making things explicit, making it obvious what’s what, and although it doesn’t do it entirely everywhere, it does do it for instance attributes. That’s why assigning to an instance attribute needs to know what instance to assign to, and that’s why it needs self..
回答 1
让我们看一个简单的向量类:
classVector:def __init__(self, x, y):
self.x = x
self.y = y
So the whole structure stays the same. How can me make use of this? If we assume for a moment that we hadn’t written a length method for our Vector class, we could do this:
Vector.length_new = length_global
v = Vector(3, 4)
print(v.length_new()) # 5.0
This works because the first parameter of length_global, can be re-used as the self parameter in length_new. This would not be possible without an explicit self.
Another way of understanding the need for the explicit self is to see where Python adds some syntactical sugar. When you keep in mind, that basically, a call like
v_instance.length()
is internally transformed to
Vector.length(v_instance)
it is easy to see where the self fits in. You don’t actually write instance methods in Python; what you write is class methods which must take an instance as a first parameter. And therefore, you’ll have to place the instance parameter somewhere explicitly.
When objects are instantiated, the object itself is passed into the self parameter.
Because of this, the object’s data is bound to the object. Below is an example of how you might like to visualize what each object’s data might look. Notice how ‘self’ is replaced with the objects name. I’m not saying this example diagram below is wholly accurate but it hopefully with serve a purpose in visualizing the use of self.
The Object is passed into the self parameter so that the object can keep hold of its own data.
Although this may not be wholly accurate, think of the process of instantiating an object like this: When an object is made it uses the class as a template for its own data and methods. Without passing it’s own name into the self parameter, the attributes and methods in the class would remain as a general template and would not be referenced to (belong to) the object. So by passing the object’s name into the self parameter it means that if 100 objects are instantiated from the one class, they can all keep track of their own data and methods.
See the illustration below:
回答 4
我喜欢这个例子:
class A:
foo =[]
a, b = A(), A()
a.foo.append(5)
b.foo
ans:[5]class A:def __init__(self):
self.foo =[]
a, b = A(), A()
a.foo.append(5)
b.foo
ans:[]
class A:
foo = []
a, b = A(), A()
a.foo.append(5)
b.foo
ans: [5]
class A:
def __init__(self):
self.foo = []
a, b = A(), A()
a.foo.append(5)
b.foo
ans: []
Classes are just a way to avoid passing in this “state” thing all the time (and other nice things like initializing, class composition, the rarely-needed metaclasses, and supporting custom methods to override operators).
Now let’s demonstrate the above code using the built-in python class machinery, to show how it’s basically the same thing.
class State(object):
def __init__(self):
self.field = 'init'
def add(self, x):
self.field += x
def mult(self, x):
self.field *= x
s = State()
s.add('added') # self is implicitly passed in
s.mult(2) # self is implicitly passed in
print( s.field )
[migrated my answer from duplicate closed question]
As in Modula-3, there are no shorthands [in Python] for referencing the object’s members from its methods: the method function is declared with an explicit first argument representing the object, which is provided implicitly by the call.
Often, the first argument of a method is called self. This is nothing more than a convention: the name self has absolutely no special meaning to Python. Note, however, that by not following the convention your code may be less readable to other Python programmers, and it is also conceivable that a class browser program might be written that relies upon such a convention.
class C1(object):def __init__(self):print"C1 init"class C2(C1):def __init__(self):#overrides C1.__init__print"C2 init"
C1.__init__(self)#but we still want C1 to init the class too
As well as all the other reasons already stated, it allows for easier access to overridden methods; you can call Class.some_method(inst).
An example of where it’s useful:
class C1(object):
def __init__(self):
print "C1 init"
class C2(C1):
def __init__(self): #overrides C1.__init__
print "C2 init"
C1.__init__(self) #but we still want C1 to init the class too
Python is not a language built for Object Oriented Programming unlike Java or C++.
When calling a static method in Python, one simply writes a method with regular arguments inside it.
class Animal():
def staticMethod():
print "This is a static method"
However, an object method, which requires you to make a variable, which is an Animal, in this case, needs the self argument
class Animal():
def objectMethod(self):
print "This is an object method which needs an instance of a class"
The self method is also used to refer to a variable field within the class.
class Animal():
#animalName made in constructor
def Animal(self):
self.animalName = "";
def getAnimalName(self):
return self.animalName
In this case, self is referring to the animalName variable of the entire class. REMEMBER: If you have a variable within a method, self will not work. That variable is simply existent only while that method is running. For defining fields (the variables of the entire class), you have to define them OUTSIDE the class methods.
If you don’t understand a single word of what I am saying, then Google “Object Oriented Programming.” Once you understand this, you won’t even need to ask that question :).
It’s there to follow the Python zen “explicit is better than implicit”. It’s indeed a reference to your class object. In Java and PHP, for example, it’s called this.
If user_type_name is a field on your model you access it by self.user_type_name.
classStudent:#called each time you create a new Student instancedef __init__(self,name,age):#special method to initialize
self.name=name
self.age=age
def __str__(self):#special method called for example when you use printreturn"Student %s is %s years old"%(self.name,self.age)def call(self, msg):#silly example for custom methodreturn("Hey, %s! "+msg)%self.name
#initializing two instances of the student class
bob=Student("Bob",20)
alice=Student("Alice",19)#using themprint bob.name
print bob.age
print alice #this one only works if you define the __str__ methodprint alice.call("Come here!")#notice you don't put a value for self#you can modify attributes, like when alice ages
alice.age=20print alice
First of all, self is a conventional name, you could put anything else (being coherent) in its stead.
It refers to the object itself, so when you are using it, you are declaring that .name and .age are properties of the Student objects (note, not of the Student class) you are going to create.
class Student:
#called each time you create a new Student instance
def __init__(self,name,age): #special method to initialize
self.name=name
self.age=age
def __str__(self): #special method called for example when you use print
return "Student %s is %s years old" %(self.name,self.age)
def call(self, msg): #silly example for custom method
return ("Hey, %s! "+msg) %self.name
#initializing two instances of the student class
bob=Student("Bob",20)
alice=Student("Alice",19)
#using them
print bob.name
print bob.age
print alice #this one only works if you define the __str__ method
print alice.call("Come here!") #notice you don't put a value for self
#you can modify attributes, like when alice ages
alice.age=20
print alice
self is an object reference to the object itself, therefore, they are same.
Python methods are not called in the context of the object itself.
self in Python may be used to deal with custom object models or something.
classMyClass():def staticMethod():print"This is a static method"def objectMethod(self):print"This is an object method which needs an instance of a class, and that is what self refers to"
The use of the argument, conventionally called self isn’t as hard to understand, as is why is it necessary? Or as to why explicitly mention it? That, I suppose, is a bigger question for most users who look up this question, or if it is not, they will certainly have the same question as they move forward learning python. I recommend them to read these couple of blogs:
The first argument of every class method, including init, is always a reference to the current instance of the class. By convention, this argument is always named self. In the init method, self refers to the newly created object; in other class methods, it refers to the instance whose method was called. For example the below code is the same as the above code.
Another thing I would like to add is, an optional self argument allows me to declare static methods inside a class, by not writing self.
Code examples:
class MyClass():
def staticMethod():
print "This is a static method"
def objectMethod(self):
print "This is an object method which needs an instance of a class, and that is what self refers to"
PS:This works only in Python 3.x.
In previous versions, you have to explicitly add @staticmethod decorator, otherwise self argument is obligatory.
I’m surprised nobody has brought up Lua. Lua also uses the ‘self’ variable however it can be omitted but still used. C++ does the same with ‘this’. I don’t see any reason to have to declare ‘self’ in each function but you should still be able to use it just like you can with lua and C++. For a language that prides itself on being brief it’s odd that it requires you to declare the self variable.
回答 15
请看以下示例,该示例清楚地说明了 self
classRestaurant(object):
bankrupt =Falsedef open_branch(self):ifnot self.bankrupt:print("branch opened")#create instance1>>> x =Restaurant()>>> x.bankrupt
False#create instance2>>> y =Restaurant()>>> y.bankrupt =True>>> y.bankrupt
True>>> x.bankrupt
False
Is because by the way python is designed the alternatives would hardly work. Python is designed to allow methods or functions to be defined in a context where both implicit this (a-la Java/C++) or explicit @ (a-la ruby) wouldn’t work. Let’s have an example with the explicit approach with python conventions:
def fubar(x):
self.x = x
class C:
frob = fubar
Now the fubar function wouldn’t work since it would assume that self is a global variable (and in frob as well). The alternative would be to execute method’s with a replaced global scope (where self is the object).
The implicit approach would be
def fubar(x)
myX = x
class C:
frob = fubar
This would mean that myX would be interpreted as a local variable in fubar (and in frob as well). The alternative here would be to execute methods with a replaced local scope which is retained between calls, but that would remove the posibility of method local variables.
However the current situation works out well:
def fubar(self, x)
self.x = x
class C:
frob = fubar
here when called as a method frob will receive the object on which it’s called via the self parameter, and fubar can still be called with an object as parameter and work the same (it is the same as C.frob I think).
In the __init__ method, self refers to the newly created object; in other class methods, it refers to the instance whose method was called.
self, as a name, is just a convention, call it as you want ! but when using it, for example to delete the object, you have to use the same name: __del__(var), where var was used in the __init__(var,[...])
You should take a look at cls too, to have the bigger picture. This post could be helpful.
回答 18
self的作用类似于当前的对象名称或class的实例。
# Self explanation.class classname(object):def __init__(self,name):
self.name=name
# Self is acting as a replacement of object name.#self.name=object1.namedef display(self):print("Name of the person is :",self.name)print("object name:",object1.name)
object1=classname("Bucky")
object2=classname("ford")
object1.display()
object2.display()###### Output Name of the person is:Bucky
object name:BuckyName of the person is: ford
object name:Bucky
self is acting as like current object name or instance of class .
# Self explanation.
class classname(object):
def __init__(self,name):
self.name=name
# Self is acting as a replacement of object name.
#self.name=object1.name
def display(self):
print("Name of the person is :",self.name)
print("object name:",object1.name)
object1=classname("Bucky")
object2=classname("ford")
object1.display()
object2.display()
###### Output
Name of the person is : Bucky
object name: Bucky
Name of the person is : ford
object name: Bucky
If we would just stick to functional programming we would not need self.
Once we enter the Python OOP we find self there.
Here is the typical use case class C with the method m1
class C:
def m1(self, arg):
print(self, ' inside')
pass
ci =C()
print(ci, ' outside')
ci.m1(None)
print(hex(id(ci))) # hex memory address
This program will output:
<__main__.C object at 0x000002B9D79C6CC0> outside
<__main__.C object at 0x000002B9D79C6CC0> inside
0x2b9d79c6cc0
So self holds the memory address of the class instance.
The purpose of self would be to hold the reference for instance methods and for us to have explicit access to that reference.
Note there are three different types of class methods:
the special thing about methods is that the instance object is passed as the first argument of the function. In our example, the call x.f() is exactly equivalent to MyClass.f(x). In general, calling a method with a list of n arguments is equivalent to calling the corresponding function with an argument list that is created by inserting the method’s instance object before the first argument.
preceding this the related snippet,
class MyClass:
"""A simple example class"""
i = 12345
def f(self):
return 'hello world'