问题:获取数的所有除数的最佳方法是什么?
这是非常愚蠢的方式:
def divisorGenerator(n):
for i in xrange(1,n/2+1):
if n%i == 0: yield i
yield n
我想要得到的结果与此类似,但是我想要一个更智能的算法(这个算法太慢而且太笨了:-)
我可以很快找到主要因素及其多样性。我有一个生成器以这种方式生成因子:
(因数1,多重性1)(因数
2,多重性2)
(因数3,多重性3)
等等…
即输出
for i in factorGenerator(100):
print i
是:
(2, 2)
(5, 2)
我不知道这对我想做的事情有多大帮助(我为其他问题编写了代码),无论如何,我都希望有一种更聪明的制作方法
for i in divisorGen(100):
print i
输出:
1
2
4
5
10
20
25
50
100
更新:非常感谢Greg Hewgill和他的“智能方式” :)计算100000000的所有除数,而用39s的方式计算了我的机器上愚蠢的方式花费了0.01s,这很酷:D
更新2:别说这是这篇文章的重复。计算给定数的除数无需计算所有除数。这是一个不同的问题,如果您认为不是这样,那么请在Wikipedia上查找“除数函数”。在发布之前,请先阅读问题和答案,如果您不明白主题是什么,请不要添加无用且已经给出答案的内容。
回答 0
给定您的factorGenerator
功能,这里divisorGen
应该可以工作:
def divisorGen(n):
factors = list(factorGenerator(n))
nfactors = len(factors)
f = [0] * nfactors
while True:
yield reduce(lambda x, y: x*y, [factors[x][0]**f[x] for x in range(nfactors)], 1)
i = 0
while True:
f[i] += 1
if f[i] <= factors[i][1]:
break
f[i] = 0
i += 1
if i >= nfactors:
return
该算法的整体效率将完全取决于的效率factorGenerator
。
回答 1
要扩展Shimi所说的话,您应该只在1到n的平方根之间运行循环。然后找到对,执行n / i
,这将覆盖整个问题空间。
还要指出的是,这是一个NP或“困难”的问题。穷举搜索(您正在执行的方式)与保证答案的效果差不多。加密算法等使用此事实来帮助保护它们。如果有人要解决这个问题,那么我们目前大多数的“安全”通信,即使不是全部,也会变得不安全。
Python代码:
import math
def divisorGenerator(n):
large_divisors = []
for i in xrange(1, int(math.sqrt(n) + 1)):
if n % i == 0:
yield i
if i*i != n:
large_divisors.append(n / i)
for divisor in reversed(large_divisors):
yield divisor
print list(divisorGenerator(100))
哪个应该输出类似以下的列表:
[1、2、4、5、10、20、25、50、100]
回答 2
尽管已经有很多解决方案,但我确实必须发布此内容:)
这是:
- 可读的
- 短
- 自包含,可复制并粘贴
- 快速(在有很多主要因素和因数的情况下,比公认的解决方案快10倍以上)
- 符合python3,python2和pypy
码:
def divisors(n):
# get factors and their counts
factors = {}
nn = n
i = 2
while i*i <= nn:
while nn % i == 0:
factors[i] = factors.get(i, 0) + 1
nn //= i
i += 1
if nn > 1:
factors[nn] = factors.get(nn, 0) + 1
primes = list(factors.keys())
# generates factors from primes[k:] subset
def generate(k):
if k == len(primes):
yield 1
else:
rest = generate(k+1)
prime = primes[k]
for factor in rest:
prime_to_i = 1
# prime_to_i iterates prime**i values, i being all possible exponents
for _ in range(factors[prime] + 1):
yield factor * prime_to_i
prime_to_i *= prime
# in python3, `yield from generate(0)` would also work
for factor in generate(0):
yield factor
回答 3
我认为您可以停在,math.sqrt(n)
而不是n / 2。
我会举一个例子,以便您容易理解。现在sqrt(28)
是5.29
这样ceil(5.29)
将为6所以我,如果我将在6停止那么我将可以得到所有的除数。怎么样?
首先查看代码,然后查看图片:
import math
def divisors(n):
divs = [1]
for i in xrange(2,int(math.sqrt(n))+1):
if n%i == 0:
divs.extend([i,n/i])
divs.extend([n])
return list(set(divs))
现在,请参见下图:
可以说我已经添加1
到除数列表中,i=2
所以我从
因此,在所有迭代的末尾,因为我将商和除数添加到列表中,所以填充了28的所有除数。
资料来源:如何确定数字的除数
回答 4
我喜欢Greg解决方案,但我希望它更像python。我觉得它会更快,更易读。所以经过一段时间的编码后,我想到了这一点。
要创建列表的笛卡尔积,需要前两个功能。一旦出现此问题,便可以重复使用。顺便说一下,我必须自己编写程序,如果有人知道该问题的标准解决方案,请随时与我联系。
现在,“ Factorgenerator”将返回一个字典。然后将字典放入“除数”中,后者使用字典首先生成一个列表列表,其中每个列表都是具有p素数的p ^ n形式的因子的列表。然后,我们生成这些列表的笛卡尔乘积,最后使用Greg的解决方案生成除数。我们对它们进行排序,然后将其退回。
我测试了它,它似乎比以前的版本要快一些。我将它作为一个更大的程序的一部分进行了测试,所以我不能真正说出它快多少。
彼得罗·斯佩罗尼(Pietrosperoni点它)
from math import sqrt
##############################################################
### cartesian product of lists ##################################
##############################################################
def appendEs2Sequences(sequences,es):
result=[]
if not sequences:
for e in es:
result.append([e])
else:
for e in es:
result+=[seq+[e] for seq in sequences]
return result
def cartesianproduct(lists):
"""
given a list of lists,
returns all the possible combinations taking one element from each list
The list does not have to be of equal length
"""
return reduce(appendEs2Sequences,lists,[])
##############################################################
### prime factors of a natural ##################################
##############################################################
def primefactors(n):
'''lists prime factors, from greatest to smallest'''
i = 2
while i<=sqrt(n):
if n%i==0:
l = primefactors(n/i)
l.append(i)
return l
i+=1
return [n] # n is prime
##############################################################
### factorization of a natural ##################################
##############################################################
def factorGenerator(n):
p = primefactors(n)
factors={}
for p1 in p:
try:
factors[p1]+=1
except KeyError:
factors[p1]=1
return factors
def divisors(n):
factors = factorGenerator(n)
divisors=[]
listexponents=[map(lambda x:k**x,range(0,factors[k]+1)) for k in factors.keys()]
listfactors=cartesianproduct(listexponents)
for f in listfactors:
divisors.append(reduce(lambda x, y: x*y, f, 1))
divisors.sort()
return divisors
print divisors(60668796879)
PS这是我第一次发布到stackoverflow。我期待任何反馈。
回答 5
这是在纯Python 3.6中对10 ** 16左右的数字进行处理的一种智能,快速的方法,
from itertools import compress
def primes(n):
""" Returns a list of primes < n for n > 2 """
sieve = bytearray([True]) * (n//2)
for i in range(3,int(n**0.5)+1,2):
if sieve[i//2]:
sieve[i*i//2::i] = bytearray((n-i*i-1)//(2*i)+1)
return [2,*compress(range(3,n,2), sieve[1:])]
def factorization(n):
""" Returns a list of the prime factorization of n """
pf = []
for p in primeslist:
if p*p > n : break
count = 0
while not n % p:
n //= p
count += 1
if count > 0: pf.append((p, count))
if n > 1: pf.append((n, 1))
return pf
def divisors(n):
""" Returns an unsorted list of the divisors of n """
divs = [1]
for p, e in factorization(n):
divs += [x*p**k for k in range(1,e+1) for x in divs]
return divs
n = 600851475143
primeslist = primes(int(n**0.5)+1)
print(divisors(n))
回答 6
改编自CodeReview,这是一个与num=1
!一起使用的变体!
from itertools import product
import operator
def prod(ls):
return reduce(operator.mul, ls, 1)
def powered(factors, powers):
return prod(f**p for (f,p) in zip(factors, powers))
def divisors(num) :
pf = dict(prime_factors(num))
primes = pf.keys()
#For each prime, possible exponents
exponents = [range(i+1) for i in pf.values()]
return (powered(primes,es) for es in product(*exponents))
回答 7
我将添加一个稍微修改过的Anivarth版本(因为我认为它是最Python的)以供将来参考。
from math import sqrt
def divisors(n):
divs = {1,n}
for i in range(2,int(sqrt(n))+1):
if n%i == 0:
divs.update((i,n//i))
return divs
回答 8
旧问题,但这是我的看法:
def divs(n, m):
if m == 1: return [1]
if n % m == 0: return [m] + divs(n, m - 1)
return divs(n, m - 1)
您可以代理:
def divisorGenerator(n):
for x in reversed(divs(n, n)):
yield x
注意:对于支持的语言,这可能是尾递归。
回答 9
假设factors
函数返回n的因数(例如,factors(60)
返回列表[2,2,3,5]),这是一个计算n除数的函数:
function divisors(n)
divs := [1]
for fact in factors(n)
temp := []
for div in divs
if fact * div not in divs
append fact * div to temp
divs := divs + temp
return divs
回答 10
这是我的解决方案。它似乎很愚蠢,但效果很好…而且我试图找到所有合适的除数,所以循环从i = 2开始。
import math as m
def findfac(n):
faclist = [1]
for i in range(2, int(m.sqrt(n) + 2)):
if n%i == 0:
if i not in faclist:
faclist.append(i)
if n/i not in faclist:
faclist.append(n/i)
return facts
回答 11
如果您只在乎使用列表推导,对您而言别无其他!
from itertools import combinations
from functools import reduce
def get_devisors(n):
f = [f for f,e in list(factorGenerator(n)) for i in range(e)]
fc = [x for l in range(len(f)+1) for x in combinations(f, l)]
devisors = [1 if c==() else reduce((lambda x, y: x * y), c) for c in set(fc)]
return sorted(devisors)
回答 12
如果您的PC拥有大量内存,那么使用numpy可以使单个行足够快:
N = 10000000; tst = np.arange(1, N); tst[np.mod(N, tst) == 0]
Out:
array([ 1, 2, 4, 5, 8, 10, 16,
20, 25, 32, 40, 50, 64, 80,
100, 125, 128, 160, 200, 250, 320,
400, 500, 625, 640, 800, 1000, 1250,
1600, 2000, 2500, 3125, 3200, 4000, 5000,
6250, 8000, 10000, 12500, 15625, 16000, 20000,
25000, 31250, 40000, 50000, 62500, 78125, 80000,
100000, 125000, 156250, 200000, 250000, 312500, 400000,
500000, 625000, 1000000, 1250000, 2000000, 2500000, 5000000])
在我的慢速PC上花费不到1秒。
回答 13
我通过生成器函数的解决方案是:
def divisor(num):
for x in range(1, num + 1):
if num % x == 0:
yield x
while True:
yield None
回答 14
return [x for x in range(n+1) if n/x==int(n/x)]
回答 15
对我来说,这很好,也很干净(Python 3)
def divisors(number):
n = 1
while(n<number):
if(number%n==0):
print(n)
else:
pass
n += 1
print(number)
速度不是很快,但是可以按需逐行返回除数,如果您确实想要,也可以执行list.append(n)和list.append(number)