问题:获取熊猫应用函数中的行的索引
我正在尝试在整个DataFrame
Pandas中应用的函数中访问行的索引。我有这样的事情:
df = pandas.DataFrame([[1,2,3],[4,5,6]], columns=['a','b','c'])
>>> df
a b c
0 1 2 3
1 4 5 6
我将定义一个函数来访问给定行的元素
def rowFunc(row):
return row['a'] + row['b'] * row['c']
我可以这样应用它:
df['d'] = df.apply(rowFunc, axis=1)
>>> df
a b c d
0 1 2 3 7
1 4 5 6 34
太棒了!现在,如果我想将索引合并到函数中怎么办?DataFrame
在添加之前,该行中任何给定行的索引都d
将是Index([u'a', u'b', u'c', u'd'], dtype='object')
,但是我想要0和1。所以我不能只访问row.index
。
我知道我可以在存储索引的表中创建一个临时列,但是我想知道它是否存储在行对象的某个地方。
I am trying to access the index of a row in a function applied across an entire DataFrame
in Pandas. I have something like this:
df = pandas.DataFrame([[1,2,3],[4,5,6]], columns=['a','b','c'])
>>> df
a b c
0 1 2 3
1 4 5 6
and I’ll define a function that access elements with a given row
def rowFunc(row):
return row['a'] + row['b'] * row['c']
I can apply it like so:
df['d'] = df.apply(rowFunc, axis=1)
>>> df
a b c d
0 1 2 3 7
1 4 5 6 34
Awesome! Now what if I want to incorporate the index into my function?
The index of any given row in this DataFrame
before adding d
would be Index([u'a', u'b', u'c', u'd'], dtype='object')
, but I want the 0 and 1. So I can’t just access row.index
.
I know I could create a temporary column in the table where I store the index, but I’m wondering if it is stored in the row object somewhere.
回答 0
在这种情况下,要访问索引,请访问name
属性:
In [182]:
df = pd.DataFrame([[1,2,3],[4,5,6]], columns=['a','b','c'])
def rowFunc(row):
return row['a'] + row['b'] * row['c']
def rowIndex(row):
return row.name
df['d'] = df.apply(rowFunc, axis=1)
df['rowIndex'] = df.apply(rowIndex, axis=1)
df
Out[182]:
a b c d rowIndex
0 1 2 3 7 0
1 4 5 6 34 1
请注意,如果这确实是您要尝试执行的操作,则可以使用以下命令并且速度更快:
In [198]:
df['d'] = df['a'] + df['b'] * df['c']
df
Out[198]:
a b c d
0 1 2 3 7
1 4 5 6 34
In [199]:
%timeit df['a'] + df['b'] * df['c']
%timeit df.apply(rowIndex, axis=1)
10000 loops, best of 3: 163 µs per loop
1000 loops, best of 3: 286 µs per loop
编辑
3年后再看这个问题,您可以这样做:
In[15]:
df['d'],df['rowIndex'] = df['a'] + df['b'] * df['c'], df.index
df
Out[15]:
a b c d rowIndex
0 1 2 3 7 0
1 4 5 6 34 1
但是假设它并不那么简单,无论您rowFunc
实际上在做什么,您都应该使用向量化函数,然后针对df索引使用它们:
In[16]:
df['newCol'] = df['a'] + df['b'] + df['c'] + df.index
df
Out[16]:
a b c d rowIndex newCol
0 1 2 3 7 0 6
1 4 5 6 34 1 16
To access the index in this case you access the name
attribute:
In [182]:
df = pd.DataFrame([[1,2,3],[4,5,6]], columns=['a','b','c'])
def rowFunc(row):
return row['a'] + row['b'] * row['c']
def rowIndex(row):
return row.name
df['d'] = df.apply(rowFunc, axis=1)
df['rowIndex'] = df.apply(rowIndex, axis=1)
df
Out[182]:
a b c d rowIndex
0 1 2 3 7 0
1 4 5 6 34 1
Note that if this is really what you are trying to do that the following works and is much faster:
In [198]:
df['d'] = df['a'] + df['b'] * df['c']
df
Out[198]:
a b c d
0 1 2 3 7
1 4 5 6 34
In [199]:
%timeit df['a'] + df['b'] * df['c']
%timeit df.apply(rowIndex, axis=1)
10000 loops, best of 3: 163 µs per loop
1000 loops, best of 3: 286 µs per loop
EDIT
Looking at this question 3+ years later, you could just do:
In[15]:
df['d'],df['rowIndex'] = df['a'] + df['b'] * df['c'], df.index
df
Out[15]:
a b c d rowIndex
0 1 2 3 7 0
1 4 5 6 34 1
but assuming it isn’t as trivial as this, whatever your rowFunc
is really doing, you should look to use the vectorised functions, and then use them against the df index:
In[16]:
df['newCol'] = df['a'] + df['b'] + df['c'] + df.index
df
Out[16]:
a b c d rowIndex newCol
0 1 2 3 7 0 6
1 4 5 6 34 1 16
回答 1
要么:
1.与row.name
内线apply(..., axis=1)
通话:
df = pandas.DataFrame([[1,2,3],[4,5,6]], columns=['a','b','c'], index=['x','y'])
a b c
x 1 2 3
y 4 5 6
df.apply(lambda row: row.name, axis=1)
x x
y y
2.与iterrows()
(较慢)
DataFrame.iterrows()允许您遍历行并访问其索引:
for idx, row in df.iterrows():
...
Either:
1. with row.name
inside the apply(..., axis=1)
call:
df = pandas.DataFrame([[1,2,3],[4,5,6]], columns=['a','b','c'], index=['x','y'])
a b c
x 1 2 3
y 4 5 6
df.apply(lambda row: row.name, axis=1)
x x
y y
2. with iterrows()
(slower)
DataFrame.iterrows() allows you to iterate over rows, and access their index:
for idx, row in df.iterrows():
...
回答 2
要回答原始问题:是的,您可以在中访问行的索引值apply()
。它在键下可用,name
并且需要您指定axis=1
(因为lambda处理行的列而不是列的行)。
工作示例(熊猫0.23.4):
>>> import pandas as pd
>>> df = pd.DataFrame([[1,2,3],[4,5,6]], columns=['a','b','c'])
>>> df.set_index('a', inplace=True)
>>> df
b c
a
1 2 3
4 5 6
>>> df['index_x10'] = df.apply(lambda row: 10*row.name, axis=1)
>>> df
b c index_x10
a
1 2 3 10
4 5 6 40
To answer the original question: yes, you can access the index value of a row in apply()
. It is available under the key name
and requires that you specify axis=1
(because the lambda processes the columns of a row and not the rows of a column).
Working example (pandas 0.23.4):
>>> import pandas as pd
>>> df = pd.DataFrame([[1,2,3],[4,5,6]], columns=['a','b','c'])
>>> df.set_index('a', inplace=True)
>>> df
b c
a
1 2 3
4 5 6
>>> df['index_x10'] = df.apply(lambda row: 10*row.name, axis=1)
>>> df
b c index_x10
a
1 2 3 10
4 5 6 40