问题:读取巨大的.csv文件

我目前正在尝试从Python 2.7中的.csv文件读取数据,该文件最多包含100万行和200列(文件范围从100mb到1.6gb)。对于少于300,000行的文件,我可以(非常缓慢地)执行此操作,但是一旦超过该行,就会出现内存错误。我的代码如下所示:

def getdata(filename, criteria):
    data=[]
    for criterion in criteria:
        data.append(getstuff(filename, criteron))
    return data

def getstuff(filename, criterion):
    import csv
    data=[]
    with open(filename, "rb") as csvfile:
        datareader=csv.reader(csvfile)
        for row in datareader: 
            if row[3]=="column header":
                data.append(row)
            elif len(data)<2 and row[3]!=criterion:
                pass
            elif row[3]==criterion:
                data.append(row)
            else:
                return data

在getstuff函数中使用else子句的原因是,所有符合条件的元素都将一起列在csv文件中,因此当我经过它们时,为了节省时间,我离开了循环。

我的问题是:

  1. 我如何设法使其与较大的文件一起使用?

  2. 有什么办法可以使它更快?

我的计算机具有8gb RAM,运行64位Windows 7,处理器为3.40 GHz(不确定您需要什么信息)。

I’m currently trying to read data from .csv files in Python 2.7 with up to 1 million rows, and 200 columns (files range from 100mb to 1.6gb). I can do this (very slowly) for the files with under 300,000 rows, but once I go above that I get memory errors. My code looks like this:

def getdata(filename, criteria):
    data=[]
    for criterion in criteria:
        data.append(getstuff(filename, criteron))
    return data

def getstuff(filename, criterion):
    import csv
    data=[]
    with open(filename, "rb") as csvfile:
        datareader=csv.reader(csvfile)
        for row in datareader: 
            if row[3]=="column header":
                data.append(row)
            elif len(data)<2 and row[3]!=criterion:
                pass
            elif row[3]==criterion:
                data.append(row)
            else:
                return data

The reason for the else clause in the getstuff function is that all the elements which fit the criterion will be listed together in the csv file, so I leave the loop when I get past them to save time.

My questions are:

  1. How can I manage to get this to work with the bigger files?

  2. Is there any way I can make it faster?

My computer has 8gb RAM, running 64bit Windows 7, and the processor is 3.40 GHz (not certain what information you need).


回答 0

您正在将所有行读入列表,然后处理该列表。不要那样做

在生成行时对其进行处理。如果需要先过滤数据,请使用生成器函数:

import csv

def getstuff(filename, criterion):
    with open(filename, "rb") as csvfile:
        datareader = csv.reader(csvfile)
        yield next(datareader)  # yield the header row
        count = 0
        for row in datareader:
            if row[3] == criterion:
                yield row
                count += 1
            elif count:
                # done when having read a consecutive series of rows 
                return

我还简化了您的过滤器测试;逻辑相同,但更为简洁。

因为只匹配与条件匹配的单个行序列,所以还可以使用:

import csv
from itertools import dropwhile, takewhile

def getstuff(filename, criterion):
    with open(filename, "rb") as csvfile:
        datareader = csv.reader(csvfile)
        yield next(datareader)  # yield the header row
        # first row, plus any subsequent rows that match, then stop
        # reading altogether
        # Python 2: use `for row in takewhile(...): yield row` instead
        # instead of `yield from takewhile(...)`.
        yield from takewhile(
            lambda r: r[3] == criterion,
            dropwhile(lambda r: r[3] != criterion, datareader))
        return

您现在可以getstuff()直接循环。在getdata()

def getdata(filename, criteria):
    for criterion in criteria:
        for row in getstuff(filename, criterion):
            yield row

现在直接getdata()在您的代码中循环:

for row in getdata(somefilename, sequence_of_criteria):
    # process row

现在,您仅在内存中保留一行,而不是每个条件存储数千行。

yield使函数成为生成器函数,这意味着直到开始循环它之前,它不会做任何工作。

You are reading all rows into a list, then processing that list. Don’t do that.

Process your rows as you produce them. If you need to filter the data first, use a generator function:

import csv

def getstuff(filename, criterion):
    with open(filename, "rb") as csvfile:
        datareader = csv.reader(csvfile)
        yield next(datareader)  # yield the header row
        count = 0
        for row in datareader:
            if row[3] == criterion:
                yield row
                count += 1
            elif count:
                # done when having read a consecutive series of rows 
                return

I also simplified your filter test; the logic is the same but more concise.

Because you are only matching a single sequence of rows matching the criterion, you could also use:

import csv
from itertools import dropwhile, takewhile

def getstuff(filename, criterion):
    with open(filename, "rb") as csvfile:
        datareader = csv.reader(csvfile)
        yield next(datareader)  # yield the header row
        # first row, plus any subsequent rows that match, then stop
        # reading altogether
        # Python 2: use `for row in takewhile(...): yield row` instead
        # instead of `yield from takewhile(...)`.
        yield from takewhile(
            lambda r: r[3] == criterion,
            dropwhile(lambda r: r[3] != criterion, datareader))
        return

You can now loop over getstuff() directly. Do the same in getdata():

def getdata(filename, criteria):
    for criterion in criteria:
        for row in getstuff(filename, criterion):
            yield row

Now loop directly over getdata() in your code:

for row in getdata(somefilename, sequence_of_criteria):
    # process row

You now only hold one row in memory, instead of your thousands of lines per criterion.

yield makes a function a generator function, which means it won’t do any work until you start looping over it.


回答 1

尽管Martijin的答案是最好的。这是为初学者处理大型csv文件的更直观的方法。这使您可以一次处理一组行或块。

import pandas as pd
chunksize = 10 ** 8
for chunk in pd.read_csv(filename, chunksize=chunksize):
    process(chunk)

Although Martijin’s answer is prob best. Here is a more intuitive way to process large csv files for beginners. This allows you to process groups of rows, or chunks, at a time.

import pandas as pd
chunksize = 10 ** 8
for chunk in pd.read_csv(filename, chunksize=chunksize):
    process(chunk)

回答 2

我进行了大量的振动分析,并研究了大型数据集(数以亿计的点)。我的测试显示pandas.read_csv()函数比numpy.genfromtxt()快20倍。genfromtxt()函数比numpy.loadtxt()快3倍。似乎您需要大数据集的熊猫。

我在博客上讨论了用于测试的代码和数据集,该博客讨论了MATLAB vs Python进行振动分析

I do a fair amount of vibration analysis and look at large data sets (tens and hundreds of millions of points). My testing showed the pandas.read_csv() function to be 20 times faster than numpy.genfromtxt(). And the genfromtxt() function is 3 times faster than the numpy.loadtxt(). It seems that you need pandas for large data sets.

I posted the code and data sets I used in this testing on a blog discussing MATLAB vs Python for vibration analysis.


回答 3

对我有用的是而且超快速的是

import pandas as pd
import dask.dataframe as dd
import time
t=time.clock()
df_train = dd.read_csv('../data/train.csv', usecols=[col1, col2])
df_train=df_train.compute()
print("load train: " , time.clock()-t)

另一个可行的解决方案是:

import pandas as pd 
from tqdm import tqdm

PATH = '../data/train.csv'
chunksize = 500000 
traintypes = {
'col1':'category',
'col2':'str'}

cols = list(traintypes.keys())

df_list = [] # list to hold the batch dataframe

for df_chunk in tqdm(pd.read_csv(PATH, usecols=cols, dtype=traintypes, chunksize=chunksize)):
    # Can process each chunk of dataframe here
    # clean_data(), feature_engineer(),fit()

    # Alternatively, append the chunk to list and merge all
    df_list.append(df_chunk) 

# Merge all dataframes into one dataframe
X = pd.concat(df_list)

# Delete the dataframe list to release memory
del df_list
del df_chunk

what worked for me was and is superfast is

import pandas as pd
import dask.dataframe as dd
import time
t=time.clock()
df_train = dd.read_csv('../data/train.csv', usecols=[col1, col2])
df_train=df_train.compute()
print("load train: " , time.clock()-t)

Another working solution is:

import pandas as pd 
from tqdm import tqdm

PATH = '../data/train.csv'
chunksize = 500000 
traintypes = {
'col1':'category',
'col2':'str'}

cols = list(traintypes.keys())

df_list = [] # list to hold the batch dataframe

for df_chunk in tqdm(pd.read_csv(PATH, usecols=cols, dtype=traintypes, chunksize=chunksize)):
    # Can process each chunk of dataframe here
    # clean_data(), feature_engineer(),fit()

    # Alternatively, append the chunk to list and merge all
    df_list.append(df_chunk) 

# Merge all dataframes into one dataframe
X = pd.concat(df_list)

# Delete the dataframe list to release memory
del df_list
del df_chunk

回答 4

对于着陆这个问题的人。将熊猫与’ chunksize ‘和’ usecols ‘ 一起使用,比其他建议的选项更快地读取了一个巨大的zip文件。

import pandas as pd

sample_cols_to_keep =['col_1', 'col_2', 'col_3', 'col_4','col_5']

# First setup dataframe iterator, ‘usecols’ parameter filters the columns, and 'chunksize' sets the number of rows per chunk in the csv. (you can change these parameters as you wish)
df_iter = pd.read_csv('../data/huge_csv_file.csv.gz', compression='gzip', chunksize=20000, usecols=sample_cols_to_keep) 

# this list will store the filtered dataframes for later concatenation 
df_lst = [] 

# Iterate over the file based on the criteria and append to the list
for df_ in df_iter: 
        tmp_df = (df_.rename(columns={col: col.lower() for col in df_.columns}) # filter eg. rows where 'col_1' value grater than one
                                  .pipe(lambda x:  x[x.col_1 > 0] ))
        df_lst += [tmp_df.copy()] 

# And finally combine filtered df_lst into the final lareger output say 'df_final' dataframe 
df_final = pd.concat(df_lst)

For someone who lands to this question. Using pandas with ‘chunksize’ and ‘usecols’ helped me to read a huge zip file faster than the other proposed options.

import pandas as pd

sample_cols_to_keep =['col_1', 'col_2', 'col_3', 'col_4','col_5']

# First setup dataframe iterator, ‘usecols’ parameter filters the columns, and 'chunksize' sets the number of rows per chunk in the csv. (you can change these parameters as you wish)
df_iter = pd.read_csv('../data/huge_csv_file.csv.gz', compression='gzip', chunksize=20000, usecols=sample_cols_to_keep) 

# this list will store the filtered dataframes for later concatenation 
df_lst = [] 

# Iterate over the file based on the criteria and append to the list
for df_ in df_iter: 
        tmp_df = (df_.rename(columns={col: col.lower() for col in df_.columns}) # filter eg. rows where 'col_1' value grater than one
                                  .pipe(lambda x:  x[x.col_1 > 0] ))
        df_lst += [tmp_df.copy()] 

# And finally combine filtered df_lst into the final lareger output say 'df_final' dataframe 
df_final = pd.concat(df_lst)

回答 5

这是Python3的另一个解决方案:

import csv
with open(filename, "r") as csvfile:
    datareader = csv.reader(csvfile)
    count = 0
    for row in datareader:
        if row[3] in ("column header", criterion):
            doSomething(row)
            count += 1
        elif count > 2:
            break

datareader是一个生成器函数。

here’s another solution for Python3:

import csv
with open(filename, "r") as csvfile:
    datareader = csv.reader(csvfile)
    count = 0
    for row in datareader:
        if row[3] in ("column header", criterion):
            doSomething(row)
            count += 1
        elif count > 2:
            break

here datareader is a generator function.


回答 6

如果您使用的是熊猫并且有很多RAM(足以将整个文件读入内存),请尝试使用with low_memory=False,例如:

import pandas as pd
data = pd.read_csv('file.csv', low_memory=False)

If you are using pandas and have lots of RAM (enough to read the whole file into memory) try using with low_memory=False, e.g.:

import pandas as pd
data = pd.read_csv('file.csv', low_memory=False)

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。