问题:避免“ if x:return x”语句的Python方法
我有一个方法可以依次调用其他4种方法来检查特定条件,并且每当一个方法返回Truthy时立即返回(不检查以下方法)。
def check_all_conditions():
x = check_size()
if x:
return x
x = check_color()
if x:
return x
x = check_tone()
if x:
return x
x = check_flavor()
if x:
return x
return None
这似乎是很多行李代码。与其执行每行2行的if语句,不如执行以下操作:
x and return x
但这是无效的Python。我在这里错过了一个简单,优雅的解决方案吗?顺便说一句,在这种情况下,这四种检查方法可能很昂贵,因此我不想多次调用它们。
I have a method that calls 4 other methods in sequence to check for specific conditions, and returns immediately (not checking the following ones) whenever one returns something Truthy.
def check_all_conditions():
x = check_size()
if x:
return x
x = check_color()
if x:
return x
x = check_tone()
if x:
return x
x = check_flavor()
if x:
return x
return None
This seems like a lot of baggage code. Instead of each 2-line if statement, I’d rather do something like:
x and return x
But that is invalid Python. Am I missing a simple, elegant solution here? Incidentally, in this situation, those four check methods may be expensive, so I do not want to call them multiple times.
回答 0
您可以使用循环:
conditions = (check_size, check_color, check_tone, check_flavor)
for condition in conditions:
result = condition()
if result:
return result
这具有额外的优势,您现在可以使条件数量可变。
您可以使用map()
+ filter()
(Python 3版本,使用Python 2中的future_builtins
版本)来获取第一个这样的匹配值:
try:
# Python 2
from future_builtins import map, filter
except ImportError:
# Python 3
pass
conditions = (check_size, check_color, check_tone, check_flavor)
return next(filter(None, map(lambda f: f(), conditions)), None)
但是,如果更具可读性,则值得商bat。
另一个选择是使用生成器表达式:
conditions = (check_size, check_color, check_tone, check_flavor)
checks = (condition() for condition in conditions)
return next((check for check in checks if check), None)
You could use a loop:
conditions = (check_size, check_color, check_tone, check_flavor)
for condition in conditions:
result = condition()
if result:
return result
This has the added advantage that you can now make the number of conditions variable.
You could use map()
+ filter()
(the Python 3 versions, use the future_builtins
versions in Python 2) to get the first such matching value:
try:
# Python 2
from future_builtins import map, filter
except ImportError:
# Python 3
pass
conditions = (check_size, check_color, check_tone, check_flavor)
return next(filter(None, map(lambda f: f(), conditions)), None)
but if this is more readable is debatable.
Another option is to use a generator expression:
conditions = (check_size, check_color, check_tone, check_flavor)
checks = (condition() for condition in conditions)
return next((check for check in checks if check), None)
回答 1
除了Martijn的好答案之外,您还可以连锁or
。这将返回第一个真实值,或者None
如果没有真实值,则返回:
def check_all_conditions():
return check_size() or check_color() or check_tone() or check_flavor() or None
演示:
>>> x = [] or 0 or {} or -1 or None
>>> x
-1
>>> x = [] or 0 or {} or '' or None
>>> x is None
True
Alternatively to Martijn’s fine answer, you could chain or
. This will return the first truthy value, or None
if there’s no truthy value:
def check_all_conditions():
return check_size() or check_color() or check_tone() or check_flavor() or None
Demo:
>>> x = [] or 0 or {} or -1 or None
>>> x
-1
>>> x = [] or 0 or {} or '' or None
>>> x is None
True
回答 2
不要改变
如其他答案所示,还有其他方法可以做到这一点。没有一个像您的原始代码一样清晰。
Don’t change it
There are other ways of doing this as the various other answers show. None are as clear as your original code.
回答 3
实际上,与timgeb的答案相同,但是您可以使用括号进行更好的格式化:
def check_all_the_things():
return (
one()
or two()
or five()
or three()
or None
)
In effectively the same answer as timgeb, but you could use parenthesis for nicer formatting:
def check_all_the_things():
return (
one()
or two()
or five()
or three()
or None
)
回答 4
根据Curly的定律,可以通过分解两个方面来使此代码更具可读性:
分为两个功能:
def all_conditions():
yield check_size()
yield check_color()
yield check_tone()
yield check_flavor()
def check_all_conditions():
for condition in all_conditions():
if condition:
return condition
return None
这样可以避免:
…同时保持线性,易于阅读的流程。
根据您的特定情况,您可能还会想出更好的函数名称,从而使其更具可读性。
According to Curly’s law, you can make this code more readable by splitting two concerns:
- What things do I check?
- Has one thing returned true?
into two functions:
def all_conditions():
yield check_size()
yield check_color()
yield check_tone()
yield check_flavor()
def check_all_conditions():
for condition in all_conditions():
if condition:
return condition
return None
This avoids:
- complicated logical structures
- really long lines
- repetition
…while preserving a linear, easy to read flow.
You can probably also come up with even better function names, according to your particular circumstance, which make it even more readable.
回答 5
这是Martijns第一个示例的变体。它还使用“可调用集合”样式以允许发生短路。
可以使用内置功能来代替循环any
。
conditions = (check_size, check_color, check_tone, check_flavor)
return any(condition() for condition in conditions)
请注意,此方法any
返回一个布尔值,因此,如果您需要支票的确切返回值,则此解决方案将不起作用。any
不会区分14
,'red'
,'sharp'
,'spicy'
作为返回值,将他们全部返回True
。
This is a variant of Martijns first example. It also uses the “collection of callables”-style in order to allow short-circuiting.
Instead of a loop you can use the builtin any
.
conditions = (check_size, check_color, check_tone, check_flavor)
return any(condition() for condition in conditions)
Note that any
returns a boolean, so if you need the exact return value of the check, this solution will not work. any
will not distinguish between 14
, 'red'
, 'sharp'
, 'spicy'
as return values, they will all be returned as True
.
回答 6
您是否考虑过只写if x: return x
一行?
def check_all_conditions():
x = check_size()
if x: return x
x = check_color()
if x: return x
x = check_tone()
if x: return x
x = check_flavor()
if x: return x
return None
这与您所做的一样,没有什么重复,但是IMNSHO它的读起来相当流畅。
Have you considered just writing if x: return x
all on one line?
def check_all_conditions():
x = check_size()
if x: return x
x = check_color()
if x: return x
x = check_tone()
if x: return x
x = check_flavor()
if x: return x
return None
This isn’t any less repetitive than what you had, but IMNSHO it reads quite a bit smoother.
回答 7
我很惊讶没有人提到any
为此目的而设计的内置功能:
def check_all_conditions():
return any([
check_size(),
check_color(),
check_tone(),
check_flavor()
])
请注意,尽管此实现可能是最清晰的,但即使第一个是,它也会评估所有检查True
。
如果您确实需要在第一次失败的检查时停止,请考虑使用使用reduce
哪个将列表转换为简单值:
def check_all_conditions():
checks = [check_size, check_color, check_tone, check_flavor]
return reduce(lambda a, f: a or f(), checks, False)
reduce(function, iterable[, initializer])
:将两个参数的函数从左到右累计应用于iterable的项目,以将iterable减少为单个值。左参数x是累加值,右参数y是可迭代对象的更新值。如果存在可选的初始化程序,则将其放置在计算中可迭代项的前面
在您的情况下:
lambda a, f: a or f()
是用于检查累加器a
或当前检查f()
是否为的函数True
。请注意,如果a
是True
,f()
则不会进行评估。 checks
包含检查功能(f
lambda中的项目) False
是初始值,否则将不进行检查并且结果始终为 True
any
而reduce
对于函数式编程的基本工具。我强烈建议您训练这些技巧,以及map
哪些也很棒!
I’m quite surprised nobody mentioned the built-in any
which is made for this purpose:
def check_all_conditions():
return any([
check_size(),
check_color(),
check_tone(),
check_flavor()
])
Note that although this implementation is probably the clearest, it evaluates all the checks even if the first one is True
.
If you really need to stop at the first failed check, consider using reduce
which is made to convert a list to a simple value:
def check_all_conditions():
checks = [check_size, check_color, check_tone, check_flavor]
return reduce(lambda a, f: a or f(), checks, False)
reduce(function, iterable[, initializer])
: Apply function of two
arguments cumulatively to the items of iterable, from left to right,
so as to reduce the iterable to a single value. The left argument, x,
is the accumulated value and the right argument, y, is the update
value from the iterable. If the optional initializer is present, it is
placed before the items of the iterable in the calculation
In your case:
lambda a, f: a or f()
is the function that checks that either the accumulator a
or the current check f()
is True
. Note that if a
is True
, f()
won’t be evaluated. checks
contains check functions (the f
item from the lambda) False
is the initial value, otherwise no check would happen and the result would always be True
any
and reduce
are basic tools for functional programming. I strongly encourage you to train these out as well as map
which is awesome too!
回答 8
如果您想要相同的代码结构,则可以使用三元语句!
def check_all_conditions():
x = check_size()
x = x if x else check_color()
x = x if x else check_tone()
x = x if x else check_flavor()
return x if x else None
我认为,如果您仔细看,这看起来很好看。
演示:
If you want the same code structure, you could use ternary statements!
def check_all_conditions():
x = check_size()
x = x if x else check_color()
x = x if x else check_tone()
x = x if x else check_flavor()
return x if x else None
I think this looks nice and clear if you look at it.
Demo:
回答 9
对我来说,最好的答案是@ phil-frost,其次是@ wayne-werner。
我发现有趣的是,没有人说过一个函数将返回许多不同数据类型这一事实,这将使然后必须对x本身的类型进行检查以进行进一步的工作。
因此,我将@PhilFrost的响应与保持单一类型的想法混合在一起:
def all_conditions(x):
yield check_size(x)
yield check_color(x)
yield check_tone(x)
yield check_flavor(x)
def assessed_x(x,func=all_conditions):
for condition in func(x):
if condition:
return x
return None
请注意,x
它作为参数传递,但也all_conditions
用作检查函数的传递生成器,在此函数中,所有函数都x
将被检查,然后返回True
或False
。通过使用func
with all_conditions
作为默认值,您可以使用assessed_x(x)
,也可以通过传递进一步的个性化生成器func
。
这样一来,您x
就可以通过一次支票,但是它将始终是同一类型。
For me, the best answer is that from @phil-frost, followed by @wayne-werner’s.
What I find interesting is that no one has said anything about the fact that a function will be returning many different data types, which will make then mandatory to do checks on the type of x itself to do any further work.
So I would mix @PhilFrost’s response with the idea of keeping a single type:
def all_conditions(x):
yield check_size(x)
yield check_color(x)
yield check_tone(x)
yield check_flavor(x)
def assessed_x(x,func=all_conditions):
for condition in func(x):
if condition:
return x
return None
Notice that x
is passed as an argument, but also all_conditions
is used as a passed generator of checking functions where all of them get an x
to be checked, and return True
or False
. By using func
with all_conditions
as default value, you can use assessed_x(x)
, or you can pass a further personalised generator via func
.
That way, you get x
as soon as one check passes, but it will always be the same type.
回答 10
理想情况下,我将重写check_
函数以返回True
或返回False
值。然后您的支票变成
if check_size(x):
return x
#etc
假设您x
不是一成不变的,则您的函数仍可以对其进行修改(尽管他们不能重新分配它)-但是一个被调用的函数check
实际上不应进行任何修改。
Ideally, I would re-write the check_
functions to return True
or False
rather than a value. Your checks then become
if check_size(x):
return x
#etc
Assuming your x
is not immutable, your function can still modify it (although they can’t reassign it) – but a function called check
shouldn’t really be modifying it anyway.
回答 11
上面的Martijns第一个示例略有变化,避免了if循环内:
Status = None
for c in [check_size, check_color, check_tone, check_flavor]:
Status = Status or c();
return Status
A slight variation on Martijns first example above, that avoids the if inside the loop:
Status = None
for c in [check_size, check_color, check_tone, check_flavor]:
Status = Status or c();
return Status
回答 12
我喜欢@timgeb。在此期间,我想补充一点,表达None
的return
语句没有必要为收集or
分离的语句进行评估,并在第一无为零,无空,则返回无-无,如果没有任何然后None
返回是否有None
!
所以我的check_all_conditions()
函数看起来像这样:
def check_all_conditions():
return check_size() or check_color() or check_tone() or check_flavor()
使用timeit
with时,number=10**7
我查看了一些建议的运行时间。为了进行比较,我仅使用该random.random()
函数返回字符串或None
基于随机数。这是完整的代码:
import random
import timeit
def check_size():
if random.random() < 0.25: return "BIG"
def check_color():
if random.random() < 0.25: return "RED"
def check_tone():
if random.random() < 0.25: return "SOFT"
def check_flavor():
if random.random() < 0.25: return "SWEET"
def check_all_conditions_Bernard():
x = check_size()
if x:
return x
x = check_color()
if x:
return x
x = check_tone()
if x:
return x
x = check_flavor()
if x:
return x
return None
def check_all_Martijn_Pieters():
conditions = (check_size, check_color, check_tone, check_flavor)
for condition in conditions:
result = condition()
if result:
return result
def check_all_conditions_timgeb():
return check_size() or check_color() or check_tone() or check_flavor() or None
def check_all_conditions_Reza():
return check_size() or check_color() or check_tone() or check_flavor()
def check_all_conditions_Phinet():
x = check_size()
x = x if x else check_color()
x = x if x else check_tone()
x = x if x else check_flavor()
return x if x else None
def all_conditions():
yield check_size()
yield check_color()
yield check_tone()
yield check_flavor()
def check_all_conditions_Phil_Frost():
for condition in all_conditions():
if condition:
return condition
def main():
num = 10000000
random.seed(20)
print("Bernard:", timeit.timeit('check_all_conditions_Bernard()', 'from __main__ import check_all_conditions_Bernard', number=num))
random.seed(20)
print("Martijn Pieters:", timeit.timeit('check_all_Martijn_Pieters()', 'from __main__ import check_all_Martijn_Pieters', number=num))
random.seed(20)
print("timgeb:", timeit.timeit('check_all_conditions_timgeb()', 'from __main__ import check_all_conditions_timgeb', number=num))
random.seed(20)
print("Reza:", timeit.timeit('check_all_conditions_Reza()', 'from __main__ import check_all_conditions_Reza', number=num))
random.seed(20)
print("Phinet:", timeit.timeit('check_all_conditions_Phinet()', 'from __main__ import check_all_conditions_Phinet', number=num))
random.seed(20)
print("Phil Frost:", timeit.timeit('check_all_conditions_Phil_Frost()', 'from __main__ import check_all_conditions_Phil_Frost', number=num))
if __name__ == '__main__':
main()
结果如下:
Bernard: 7.398444877040768
Martijn Pieters: 8.506569201346597
timgeb: 7.244275416364456
Reza: 6.982133448743038
Phinet: 7.925932800076634
Phil Frost: 11.924794811353031
I like @timgeb’s. In the meantime I would like to add that expressing None
in the return
statement is not needed as the collection of or
separated statements are evaluated and the first none-zero, none-empty, none-None is returned and if there isn’t any then None
is returned whether there is a None
or not!
So my check_all_conditions()
function looks like this:
def check_all_conditions():
return check_size() or check_color() or check_tone() or check_flavor()
Using timeit
with number=10**7
I looked at the running time of a number of the suggestions. For the sake of comparison I just used the random.random()
function to return a string or None
based on random numbers. Here is the whole code:
import random
import timeit
def check_size():
if random.random() < 0.25: return "BIG"
def check_color():
if random.random() < 0.25: return "RED"
def check_tone():
if random.random() < 0.25: return "SOFT"
def check_flavor():
if random.random() < 0.25: return "SWEET"
def check_all_conditions_Bernard():
x = check_size()
if x:
return x
x = check_color()
if x:
return x
x = check_tone()
if x:
return x
x = check_flavor()
if x:
return x
return None
def check_all_Martijn_Pieters():
conditions = (check_size, check_color, check_tone, check_flavor)
for condition in conditions:
result = condition()
if result:
return result
def check_all_conditions_timgeb():
return check_size() or check_color() or check_tone() or check_flavor() or None
def check_all_conditions_Reza():
return check_size() or check_color() or check_tone() or check_flavor()
def check_all_conditions_Phinet():
x = check_size()
x = x if x else check_color()
x = x if x else check_tone()
x = x if x else check_flavor()
return x if x else None
def all_conditions():
yield check_size()
yield check_color()
yield check_tone()
yield check_flavor()
def check_all_conditions_Phil_Frost():
for condition in all_conditions():
if condition:
return condition
def main():
num = 10000000
random.seed(20)
print("Bernard:", timeit.timeit('check_all_conditions_Bernard()', 'from __main__ import check_all_conditions_Bernard', number=num))
random.seed(20)
print("Martijn Pieters:", timeit.timeit('check_all_Martijn_Pieters()', 'from __main__ import check_all_Martijn_Pieters', number=num))
random.seed(20)
print("timgeb:", timeit.timeit('check_all_conditions_timgeb()', 'from __main__ import check_all_conditions_timgeb', number=num))
random.seed(20)
print("Reza:", timeit.timeit('check_all_conditions_Reza()', 'from __main__ import check_all_conditions_Reza', number=num))
random.seed(20)
print("Phinet:", timeit.timeit('check_all_conditions_Phinet()', 'from __main__ import check_all_conditions_Phinet', number=num))
random.seed(20)
print("Phil Frost:", timeit.timeit('check_all_conditions_Phil_Frost()', 'from __main__ import check_all_conditions_Phil_Frost', number=num))
if __name__ == '__main__':
main()
And here are the results:
Bernard: 7.398444877040768
Martijn Pieters: 8.506569201346597
timgeb: 7.244275416364456
Reza: 6.982133448743038
Phinet: 7.925932800076634
Phil Frost: 11.924794811353031
回答 13
这种方法有点开箱即用,但是我认为最终结果很简单,易读并且看起来不错。
基本思想是raise
当其中一个函数的评估结果为“真”并返回结果时出现异常。这是它的外观:
def check_conditions():
try:
assertFalsey(
check_size,
check_color,
check_tone,
check_flavor)
except TruthyException as e:
return e.trigger
else:
return None
assertFalsey
当一个调用的函数参数评估为真时,您将需要一个引发异常的函数:
def assertFalsey(*funcs):
for f in funcs:
o = f()
if o:
raise TruthyException(o)
可以修改上述内容,以便也为要评估的功能提供参数。
当然,您将需要TruthyException
自身。此异常提供了object
触发异常的:
class TruthyException(Exception):
def __init__(self, obj, *args):
super().__init__(*args)
self.trigger = obj
当然,您可以将原始功能转换为更通用的功能:
def get_truthy_condition(*conditions):
try:
assertFalsey(*conditions)
except TruthyException as e:
return e.trigger
else:
return None
result = get_truthy_condition(check_size, check_color, check_tone, check_flavor)
这可能会慢一些,因为您同时使用了一条if
语句和一个异常。但是,该异常最多只能处理一次,因此对性能的影响应该很小,除非您希望运行检查并获得True
成千上万次的值。
This way is a little bit outside of the box, but I think the end result is simple, readable, and looks nice.
The basic idea is to raise
an exception when one of the functions evaluates as truthy, and return the result. Here’s how it might look:
def check_conditions():
try:
assertFalsey(
check_size,
check_color,
check_tone,
check_flavor)
except TruthyException as e:
return e.trigger
else:
return None
You’ll need a assertFalsey
function that raises an exception when one of the called function arguments evaluates as truthy:
def assertFalsey(*funcs):
for f in funcs:
o = f()
if o:
raise TruthyException(o)
The above could be modified so as to also provide arguments for the functions to be evaluated.
And of course you’ll need the TruthyException
itself. This exception provides the object
that triggered the exception:
class TruthyException(Exception):
def __init__(self, obj, *args):
super().__init__(*args)
self.trigger = obj
You can turn the original function into something more general, of course:
def get_truthy_condition(*conditions):
try:
assertFalsey(*conditions)
except TruthyException as e:
return e.trigger
else:
return None
result = get_truthy_condition(check_size, check_color, check_tone, check_flavor)
This might be a bit slower because you are using both an if
statement and handling an exception. However, the exception is only handled a maximum of one time, so the hit to performance should be minor unless you expect to run the check and get a True
value many many thousands of times.
回答 14
pythonic方式是使用reduce(如已经提到的)或itertools(如下所示),但是在我看来,仅使用or
运算符的短路会产生更清晰的代码
from itertools import imap, dropwhile
def check_all_conditions():
conditions = (check_size,\
check_color,\
check_tone,\
check_flavor)
results_gen = dropwhile(lambda x:not x, imap(lambda check:check(), conditions))
try:
return results_gen.next()
except StopIteration:
return None
The pythonic way is either using reduce (as someone already mentioned) or itertools (as shown below), but it seems to me that simply using short circuiting of the or
operator produces clearer code
from itertools import imap, dropwhile
def check_all_conditions():
conditions = (check_size,\
check_color,\
check_tone,\
check_flavor)
results_gen = dropwhile(lambda x:not x, imap(lambda check:check(), conditions))
try:
return results_gen.next()
except StopIteration:
return None
回答 15
我要跳进这里,从来没有写过Python的任何一行,但是我认为这if x = check_something(): return x
是有效的吗?
如果是这样的话:
def check_all_conditions():
if (x := check_size()): return x
if (x := check_color()): return x
if (x := check_tone()): return x
if (x := check_flavor()): return x
return None
I’m going to jump in here and have never written a single line of Python, but I assume if x = check_something(): return x
is valid?
if so:
def check_all_conditions():
if (x := check_size()): return x
if (x := check_color()): return x
if (x := check_tone()): return x
if (x := check_flavor()): return x
return None
回答 16
或使用max
:
def check_all_conditions():
return max(check_size(), check_color(), check_tone(), check_flavor()) or None
Or use max
:
def check_all_conditions():
return max(check_size(), check_color(), check_tone(), check_flavor()) or None
回答 17
过去,我见过一些用dicts进行switch / case语句的有趣实现,这使我想到了这个答案。使用您提供的示例,您将获得以下内容。(这很疯狂using_complete_sentences_for_function_names
,因此check_all_conditions
将其重命名为status
。请参阅(1))
def status(k = 'a', s = {'a':'b','b':'c','c':'d','d':None}) :
select = lambda next, test : test if test else next
d = {'a': lambda : select(s['a'], check_size() ),
'b': lambda : select(s['b'], check_color() ),
'c': lambda : select(s['c'], check_tone() ),
'd': lambda : select(s['d'], check_flavor())}
while k in d : k = d[k]()
return k
select函数消除了每次调用check_FUNCTION
两次的需要,即避免check_FUNCTION() if check_FUNCTION() else next
添加另一个函数层。这对于长时间运行的功能很有用。字典中的lambda会延迟其值的执行,直到while循环为止。
作为奖励,您可以修改执行顺序,甚至可以通过更改k
和跳过某些测试,s
例如k='c',s={'c':'b','b':None}
减少测试数量)和颠倒原始处理顺序。
该timeit
研究员可能讨价还价增加额外的一层或两层堆栈,为字典成本抬头,但你似乎更关心的是代码的可爱的成本。
另外,一个更简单的实现可能如下:
def status(k=check_size) :
select = lambda next, test : test if test else next
d = {check_size : lambda : select(check_color, check_size() ),
check_color : lambda : select(check_tone, check_color() ),
check_tone : lambda : select(check_flavor, check_tone() ),
check_flavor: lambda : select(None, check_flavor())}
while k in d : k = d[k]()
return k
- 我的意思不是用pep8而是用一个简洁的描述性词代替句子。授予OP可能遵循某些编码约定,使用一些现有代码库或不在乎其代码库中的简洁术语。
I have seen some interesting implementations of switch/case statements with dicts in the past that led me to this answer. Using the example you’ve provided you would get the following. (It’s madness using_complete_sentences_for_function_names
, so check_all_conditions
is renamed to status
. See (1))
def status(k = 'a', s = {'a':'b','b':'c','c':'d','d':None}) :
select = lambda next, test : test if test else next
d = {'a': lambda : select(s['a'], check_size() ),
'b': lambda : select(s['b'], check_color() ),
'c': lambda : select(s['c'], check_tone() ),
'd': lambda : select(s['d'], check_flavor())}
while k in d : k = d[k]()
return k
The select function eliminates the need to call each check_FUNCTION
twice i.e. you avoid check_FUNCTION() if check_FUNCTION() else next
by adding another function layer. This is useful for long running functions. The lambdas in the dict delay execution of it’s values until the while loop.
As a bonus you may modify the execution order and even skip some of the tests by altering k
and s
e.g. k='c',s={'c':'b','b':None}
reduces the number of tests and reverses the original processing order.
The timeit
fellows might haggle over the cost of adding an extra layer or two to the stack and the cost for the dict look up but you seem more concerned with the prettiness of the code.
Alternatively a simpler implementation might be the following :
def status(k=check_size) :
select = lambda next, test : test if test else next
d = {check_size : lambda : select(check_color, check_size() ),
check_color : lambda : select(check_tone, check_color() ),
check_tone : lambda : select(check_flavor, check_tone() ),
check_flavor: lambda : select(None, check_flavor())}
while k in d : k = d[k]()
return k
- I mean this not in terms of pep8 but in terms of using one concise descriptive word in place of a sentence. Granted the OP may be following some coding convention, working one some existing code base or not care for terse terms in their codebase.
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。